Almost η-Ricci Solitons on the Pseudosymmetric Lorentzian Para-Kenmotsu Manifolds

  • Tuğba Mert Department of Mathematics, Faculty of Science, University of Sivas Cumhuriyet, 58140, Sivas, Turkey
  • Mehmet Atçeken Department of Mathematics, Faculty of Art and Science, University of Aksaray, 68100, Aksaray, Turkey
Keywords: Lorentzian manifold, Para-Kenmotsu manifold, pseudoparallel submanifold

Abstract

In this paper, we consider Lorentzian para-Kenmotsu manifold admitting almost $\eta-$Ricci solitons by virtue of some curvature tensors. Ricci pseudosymmetry concepts of Lorentzian para-Kenmotsu manifolds admitting $\eta-$Ricci soliton have introduced according to the choice of some curvature tensors such as Riemann, concircular, projective, $\mathcal{M-}$projective, $W_{1}$ and $W_{2}.$ After then, according to the choice of the curvature tensors, necessary conditions are given for Lorentzian para-Kenmotsu manifold admitting $\eta-$Ricci soliton to be Ricci semisymmetric. Then some characterizations are given and classifications have made under the some conditions.

Downloads

Download data is not yet available.

References

B. B. Sinha and K. L. Sai Prasad, A class of almost para contact metric manifold, Bulletin of the Calcutta Mathematical Society 87 (1995), 307-312.

A. Haseeb and R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bulletin of Parana's Mathematical Society 39 (3) (2021), 201-220. https://doi.org/10.5269/bspm.40607

R. Prasad, A. Haseeb and U. K. Gautam, On $check phi$-semisymmetric LP-Kenmotsu manifolds with a QSNM-connection admitting Ricci solitions, Kragujevac Journal of Mathematics 45(5) (2021), 815-827. https://doi.org/10.46793/kgjmat2105.815p

M. Atçeken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math. 30(1) (2022), 175-185.

G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002. http://arxiv.org/abs/math/0211159

G. Perelman, Ricci flow with surgery on three-manifolds, 2003. http://arxiv.org/abs/math/0303109

R. Sharma, Certain results on $K$-contact and $(k,mu)$-contact manifolds, J. Geom. 89 (2008), 138-147. https://doi.org/10.1007/s00022-008-2004-5

S. R. Ashoka, C. S. Bagewadi and G. Ingalahalli, Certain results on Ricci solitons in $alpha$-Sasakian manifolds, Geometry 2013 (2013), Article ID 573925, 4 pp. https://doi.org/10.1155/2013/573925

S. R. Ashoka, C. S. Bagewadi and G. Ingalahalli, A geometry on Ricci solitons in (LCS)nmanifolds, Diff. Geom.-Dynamical Systems 16 (2014), 50-62.

C. S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian-Sasakian manifolds, Acta Math. Acad. Paeda. Nyire. 28 (2012), 59-68.

G. Ingalahalli and C. S. Bagewadi, Ricci solitons in $alpha$-Sasakian manifolds, International Scholarly Research Notices 2012 (2012), Article ID 421384, 13 pp. https://doi.org/10.5402/2012/421384

C. L. Bejan and M. Crasmareanu, Ricci solitons in manifolds with quasi-contact curvature, Publ. Math. Debrecen 78 (2011), 235-243. https://doi.org/10.5486/pmd.2011.4797

A. M. Blaga, $eta-$-Ricci solitons on para-kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.

S. Chandra, S. K. Hui and A. A. Shaikh, Second order parallel tensors and Ricci solitons on $(LCS)_{n}$-manifolds, Commun. Korean Math. Soc. 30 (2015), 123-130. https://doi.org/10.4134/ckms.2015.30.2.123

B. Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl. 19 (2014), 13-21.

S. Deshmukh, H. Al-Sodais and H. Alodan, A note on Ricci solitons, Balkan J. Geom. Appl. 16 (2011), 48-55.

C. He and M. Zhu, Ricci solitons on Sasakian manifolds, 2011. arxiv:1109.4407v2 [Math.DG]

M. Atçeken, T. Mert and P. Uygun, Ricci-Pseudosymmetric $left(LCSright)_{n}-$-manifolds admitting almost $eta-$-Ricci solitons, Asian Journal of Math. and Computer Research 29(2) (2022), 23-32. https://doi.org/10.56557/ajomcor/2022/v29127900

H. G. Nagaraja and C. R. Premalatta, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis 3(2) (2012), 18-24.

M. M. Tripathi, Ricci solitons in contact metric manifolds, 2008. arxiv:0801.4222v1 [Math.DG]

Published
2023-03-29
How to Cite
Mert, T., & Atçeken, M. (2023). Almost η-Ricci Solitons on the Pseudosymmetric Lorentzian Para-Kenmotsu Manifolds. Earthline Journal of Mathematical Sciences, 12(2), 183-206. https://doi.org/10.34198/ejms.12223.183206
Section
Articles