Almost η-Ricci Solitons on the Pseudosymmetric Lorentzian Para-Kenmotsu Manifolds
Abstract
In this paper, we consider Lorentzian para-Kenmotsu manifold admitting almost $\eta-$Ricci solitons by virtue of some curvature tensors. Ricci pseudosymmetry concepts of Lorentzian para-Kenmotsu manifolds admitting $\eta-$Ricci soliton have introduced according to the choice of some curvature tensors such as Riemann, concircular, projective, $\mathcal{M-}$projective, $W_{1}$ and $W_{2}.$ After then, according to the choice of the curvature tensors, necessary conditions are given for Lorentzian para-Kenmotsu manifold admitting $\eta-$Ricci soliton to be Ricci semisymmetric. Then some characterizations are given and classifications have made under the some conditions.
References
B. B. Sinha and K. L. Sai Prasad, A class of almost para contact metric manifold, Bulletin of the Calcutta Mathematical Society 87 (1995), 307-312.
A. Haseeb and R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bulletin of Parana's Mathematical Society 39 (3) (2021), 201-220. https://doi.org/10.5269/bspm.40607
R. Prasad, A. Haseeb and U. K. Gautam, On $check phi$-semisymmetric LP-Kenmotsu manifolds with a QSNM-connection admitting Ricci solitions, Kragujevac Journal of Mathematics 45(5) (2021), 815-827. https://doi.org/10.46793/kgjmat2105.815p
M. Atçeken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math. 30(1) (2022), 175-185.
G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002. http://arxiv.org/abs/math/0211159
G. Perelman, Ricci flow with surgery on three-manifolds, 2003. http://arxiv.org/abs/math/0303109
R. Sharma, Certain results on $K$-contact and $(k,mu)$-contact manifolds, J. Geom. 89 (2008), 138-147. https://doi.org/10.1007/s00022-008-2004-5
S. R. Ashoka, C. S. Bagewadi and G. Ingalahalli, Certain results on Ricci solitons in $alpha$-Sasakian manifolds, Geometry 2013 (2013), Article ID 573925, 4 pp. https://doi.org/10.1155/2013/573925
S. R. Ashoka, C. S. Bagewadi and G. Ingalahalli, A geometry on Ricci solitons in (LCS)nmanifolds, Diff. Geom.-Dynamical Systems 16 (2014), 50-62.
C. S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian-Sasakian manifolds, Acta Math. Acad. Paeda. Nyire. 28 (2012), 59-68.
G. Ingalahalli and C. S. Bagewadi, Ricci solitons in $alpha$-Sasakian manifolds, International Scholarly Research Notices 2012 (2012), Article ID 421384, 13 pp. https://doi.org/10.5402/2012/421384
C. L. Bejan and M. Crasmareanu, Ricci solitons in manifolds with quasi-contact curvature, Publ. Math. Debrecen 78 (2011), 235-243. https://doi.org/10.5486/pmd.2011.4797
A. M. Blaga, $eta-$-Ricci solitons on para-kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.
S. Chandra, S. K. Hui and A. A. Shaikh, Second order parallel tensors and Ricci solitons on $(LCS)_{n}$-manifolds, Commun. Korean Math. Soc. 30 (2015), 123-130. https://doi.org/10.4134/ckms.2015.30.2.123
B. Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl. 19 (2014), 13-21.
S. Deshmukh, H. Al-Sodais and H. Alodan, A note on Ricci solitons, Balkan J. Geom. Appl. 16 (2011), 48-55.
C. He and M. Zhu, Ricci solitons on Sasakian manifolds, 2011. arxiv:1109.4407v2 [Math.DG]
M. Atçeken, T. Mert and P. Uygun, Ricci-Pseudosymmetric $left(LCSright)_{n}-$-manifolds admitting almost $eta-$-Ricci solitons, Asian Journal of Math. and Computer Research 29(2) (2022), 23-32. https://doi.org/10.56557/ajomcor/2022/v29127900
H. G. Nagaraja and C. R. Premalatta, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis 3(2) (2012), 18-24.
M. M. Tripathi, Ricci solitons in contact metric manifolds, 2008. arxiv:0801.4222v1 [Math.DG]
This work is licensed under a Creative Commons Attribution 4.0 International License.