Some Useful Results on Fuzzy Differential Subordination of Multivalent Functions Defined by Borel Distribution Series

  • Bedaa Alawi Abd Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq

Abstract

In this work, we define and study some families of multivalent analytic functions defined by the fuzzy subordination and Borel distribution. We discuss some interesting inclusion results and various other useful properties involving integral of these families.

References

Altinkaya, S., & Wanas, A. K. (2020). Some properties for fuzzy differential subordination defined by Wanas operator. Earthline Journal of Mathematical Sciences, 4(1), 51-62. https://doi.org/10.34198/ejms.4120.5162

Azzam, A. A., Shah, S. A., Catas, A., & Cotîrla, L.-I. (2023). On fuzzy spiral-like functions associated with the family of linear operators. Fractal Fract., 7, 145. https://doi.org/10.3390/fractalfract7020145

Haydar, E. A. (2015). On fuzzy differential subordination. Math. Moravica, 19, 123-129. https://doi.org/10.5937/MatMor1501123H

Lupas, A. A. (2013). A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative. J. Comput. Anal. Appl., 15, 1476-1483.

Lupaş, A. A. (2017). On special fuzzy differential subordinations using multiplier transformation. J. Comp. Anal. Appl., 23(6), 1029-1035.

Lupas, A. A. (2018). A note on special fuzzy differential subordinations using multiplier transformation and Ruscheweyh derivative. J. Comput. Anal. Appl., 25, 1116-1124.

Lupas, A. A., & Cãtas, A. (2021). Fuzzy differential subordination of the Atangana-Baleanu fractional integral. Symmetry, 13, 1929. https://doi.org/10.3390/sym13101929

Miller, S. S., & Mocanu, P. T. (2000). Differential Subordinations: Theory and Applications. Marcel Dekker Inc.

Noor, K. I., & Noor, M. A. (2022). Fuzzy differential subordination involving generalized Noor-Sălăgean operator. Inf. Sci. Lett., 11(6), 1-7. https://doi.org/10.18576/isl/110606

Naik, U. H., Shaikh, R. M., Gophane, M. T., & Wanas, A. K. (2022). Some differential subordinations and fuzzy differential subordinations using generalized integral operator. Italian Journal of Pure and Applied Mathematics, 48, 830-842.

Masih, V. S., Cheshmavar, J., & Maghsoudi, S. (2023). On the behavior of analytic representation of multivalent α-convex functions. Indian Journal of Pure and Applied Mathematics. https://doi.org/10.1007/s13226-023-00509-9

Oros, G. I., & Oros, Gh. (2011). The notion of subordination in fuzzy set theory. General Mathematics, 19(4), 97-103.

Oros, G. I., & Oros, Gh. (2012). Fuzzy differential subordination. Acta Universitatis Apulensis, 30, 55-64.

Oros, G. I., & Oros, Gh. (2012). Dominants and best dominants in fuzzy differential subordinations. Studia Universitatis Babes-Bolyai Mathematica, 57, 239-248.

Oros, G. I., & Oros, Gh. (2012). Briot-Bouquet fuzzy differential subordination. Analytic Universitatis Oradea Fasciculus Mathematica, 19, 83-87.

Srivastava, H. M., & El-deeb, S. M. (2021). Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution. Symmetry, 13, 1023. https://doi.org/10.3390/sym13061023

Wanas, A. K., & Khuttar, J. A. (2020). Applications of Borel distribution series on analytic functions. Earthline Journal of Mathematical Sciences, 4(2), 71-82. https://doi.org/10.34198/ejms.4120.7182

Wanas, A. K., & Majeed, A. H. (2017). Fuzzy differential subordinations for prestarlike functions of complex order and some applications. Far East Journal of Mathematical Sciences, 102(8), 1777-1788. https://doi.org/10.17654/MS102081777

Wanas, A. K., & Majeed, A. H. (2018). Fuzzy differential subordination properties of analytic functions involving generalized differential operator. Science International (Lahore), 30(2), 297-302.

Wanas, A. K., & Majeed, A. H. (2019). Fuzzy subordination results for fractional integral associated with generalized Mittag-Leffler function. Engineering Mathematics Letters, Article ID 10, 1-13. https://doi.org/10.34198/ejms.1219.143155

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Published
2024-02-14
How to Cite
Abd, B. A., & Wanas, A. K. (2024). Some Useful Results on Fuzzy Differential Subordination of Multivalent Functions Defined by Borel Distribution Series. Earthline Journal of Mathematical Sciences, 14(3), 379-389. https://doi.org/10.34198/ejms.14324.379389
Section
Articles