Results of Semigroup of Linear Equation Generating a Wave Equation
Abstract
In this paper, we present results of $\omega$-order preserving partial contraction mapping generating a wave equation. We use the theory of semigroup to generate a wave equation by showing that the operator
$ \begin{pmatrix}
0 & I\\
\Delta & 0
\end{pmatrix}, $
which is $A,$ is the infinitesimal generator of a $C_0$-semigroup of operators in some appropriately chosen Banach of functions. Furthermore we show that the operator $A$ is closed, unique and that operator $A$ is the infinitesimal generator of a wave equation.
References
A. Y. Akinyele, O. E. Jimoh, J. B. Omosowon and K. A. Bello, Results of semigroup of linear operator generating a continuous time Markov semigroup, Earthline Journal of Mathematical Sciences 10(1) (2022), 97-108. https://doi.org/10.34198/ejms.10122.97108
A. Y. Akinyele, J. U. Abubakar, K. A. Bello, L. K. Alhassan and M. A. Aasa, Results of w-order reversing partial contraction mapping generating a differential operator, Malaya Journal of Matematik 9(3) (2021), 91-98.
A. V. Balakrishnan, An operator calculus for infinitesimal generators of semigroup, Trans Amer. Math. Soc. 91 (1959), 330-353. https://doi.org/10.1090/S0002-9947-1959-0107179-0
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
H. Brezis and T. Gallouet, Nonlinear Schrodinger evolution equation, Nonlinear Anal. TMA 4 (1980), 677-681. https://doi.org/10.1016/0362-546X (80) 90068-1
R. Chill and Y. Tomilov, Stability of operator semigroups : ideas and results, Banach Center Publ., 75, Polish Acad. Sci. Inst. Math., Warsaw, 2007, pp. 71-109.
E. B. Davies, Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge University Press, Cambridge, 2007.
K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000.
J. B. Omosowon, A. Y. Akinyele, O. Y. Saka-Balogun and M. A. Ganiyu, Analytic results of semigroup of linear operator with dynamic boundary conditions, Asian Journal of Mathematics and Applications (2020), Article ID ama0561, 10 pp.
J. B. Omosowon, A. Y. Akinyele and F. M. Jimoh, Dual properties of w-order reversing partial contraction mapping in semigroup of linear operator, Asian Journal of Mathematics and Applications (2021), Article ID ama0566, 10 pp.
J. B. Omosowon, A. Y. Akinyele, K. A. Bello and B. M. Ahmed, Results of semigroup of linear operators generating a regular weak*-continuous semigroup, Earthline Journal of Mathematical Sciences 10(2) (2022), 289-304. https://doi.org/10.34198/ejms.10222.289304
J. B. Omosowon, A. Y. Akinyele, K. A. Bello and B. M. Ahmed, Results of semigroup of linear operator generating a quasilinear equations of evolution, Earthline Journal of Mathematical Sciences 10(2) (2022), 409-421. https://doi.org/10.34198/ejms.10222.409421
A. Pazy, Asymptotic behavior of the solution of an abstract evolution equation and some applications, J. Diff. Eqs. 4 (1968), 493-509. https://doi.org/10.1016/0022-0396 (68) 90001-6.
A. Pazy, A class of semi-linear equations of evolution, Isreal J. Math. 20 (1975), 23-36. https://doi.org/10.1007/BF02756753
K. Rauf and A. Y. Akinyele, Properties of w-order-preserving partial contraction mapping and its relation to Co-semigroup, Int. J. Math. Comput. Sci. 14(1) (2019), 61-68.
K. Rauf, A. Y. Akinyele, M. O. Etuk, R. O. Zubair and M. A. Aasa, Some result of stability and spectra properties on semigroup of linear operator, Advances in Pure Mathematics 9 (2019), 43-51. https://doi.org/10.4236/apm.2019.91003
I. I. Vrabie, Co-semigroups and applications, North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam, 2003.
K. Yosida, On the differentiability and representation of one-parameter semigroups of linear operators, J. Math. Soc. Japan 1 (1948), 15-21. https://doi.org/10.2969/jmsj/00110015
This work is licensed under a Creative Commons Attribution 4.0 International License.