Results of Semigroup of Linear Operator Generating a Quasilinear Equations of Evolution

  • J. B. Omosowon Department of Mathematics, University of Ilorin, Ilorin, Nigeria
  • A. Y. Akinyele Department of Mathematics, University of Ilorin, Ilorin, Nigeria
  • B. M. Ahmed Department of Mathematics, University of Ilorin, Ilorin, Nigeria
  • O. Y. Saka-Balogun Department of Mathematical and Physical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
Keywords: $\omega$-$OCP_n$, mild solution, $C_0$-semigroup, evolution equation

Abstract

In this paper, results of $\omega$-order preserving partial contraction mapping generating a quasilinear equation of evolution were presented. In general, the study of quasilinear initial value problems is quite complicated. For the sake of simplicity we restricted this study to the mild solution of the initial value problem of a quasilinear equation of evolution. We show that if the problem has a unique mild solution $v\in C([0,T]: X)$ for every given $u\in C([0,T]:X)$, then it defines a mapping $u\to v=F(u)$ of $C([0,T]:X)$ into itself. We also show that under the suitable condition, there exists always a $T',\ 0<T'\leq T$ such that the restriction of the mapping $F$ to $C([0,T']:X)$ is a contraction which maps some ball of $C([0,t']:X)$ into itself by proving the existence of a local mild solution of the initial value problem.

References

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. https://doi.org/10.1002/cpa.3160120405

A. Y. Akinyele, O. Y. Saka-Balogun and O. A. Adeyemo, Perturbation of infinitesimal generator in semigroup of linear operator, South East Asian J. Math. Math. Sci. 15(3) (2019), 53-64.

A. V. Balakrishnan, An operator calculus for infinitesimal generators of semigroup, Trans Amer. Math. Soc. 91 (1959), 330-353. https://doi.org/10.1090/S0002-9947-1959-0107179-0

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181

C. J. K. Batty, R. Chill and Y. Tomilov, Strong stability of bounded evolution families and semigroup, J. Funct. Anal. 193 (2002), 116-139. https://doi.org/10.1006/jfan. 2001.3917

H. Brezis and T. Gallouet, Nonlinear Schrodinger evolution equation, Nonlinear Anal. TMA 4 (1980), 677-681. https://doi.org/10.1016/0362-546X (80) 90068-1

R. Chill and Y. Tomilov, Stability of operator semigroups : ideas and results, Banach Center Publ., 75, Polish Acad. Sci. Inst. Math., Warsaw, 2007, pp. 71-109.

E. B. Davies, Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge University Press, Cambridge, 2007.

K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000.

J. B. Omosowon, A. Y. Akinyele, O. Y. Saka-Balogun and M. A. Ganiyu, Analytic results of semigroup of linear operator with dynamic boundary conditions, Asian Journal of Mathematics and Applications (2020), Article ID ama0561, 10 pp.

J. B. Omosowon, A. Y. Akinyele and F. M. Jimoh, Dual properties of $omega$-order reversing partial contraction mapping in semigroup of linear operator, Asian Journal of Mathematics and Applications (2021), Article ID ama0566, 10 pp.

J. B. Omosowon, A. Y. Akinyele, K. A. Bello and B. M. Ahmed, Results of semigroup of linear operators generating a regular weak*-continuous semigroup, Earthline Journal of Mathematical Sciences 10(2) (2022), 289-304. https://doi.org/10.34198/ejms.10222.289304

A. Pazy, Asymptotic behavior of the solution of an abstract evolution equation and some applications, J. Diff. Eqs. 4 (1968), 493-509. https://doi.org/10.1016/0022-0396 (68)90001-6

A. Pazy, A class of semi-linear equations of evolution, Isreal J. Math. 20 (1975), 23-36.

J. Prüss, On semilinear evolution equations in Banach spaces, J. Reine Angew. Math. 303(304) (1978), 144-158. https://doi.org/10.1515/crll.1978.303-304.144

K. Rauf and A. Y. Akinyele, Properties of $omega$-order-preserving partial contraction mapping and its relation to $C_0$-semigroup, Int. J. Math. Comput. Sci. 14(1) (2019), 61-68.

K. Rauf, A. Y. Akinyele, M. O. Etuk, R. O. Zubair and M. A. Aasa, Some result of stability and spectra properties on semigroup of linear operator, Advances in Pure Mathematics 9 (2019), 43-51. https://doi.org/10.4236/apm.2019.91003

I. I. Vrabie, $C_0$-semigroups and applications, North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam, 2003.

K. Yosida, On the differentiability and representation of one-parameter semigroups of linear operators, J. Math. Soc. Japan 1 (1948), 15-21. https://doi.org/10.2969/jmsj/00110015

https://encyclopediaofmath.org/wiki/Evolution_equation

Published
2022-08-31
How to Cite
Omosowon, J. B., Akinyele, A. Y., Ahmed, B. M., & Saka-Balogun, O. Y. (2022). Results of Semigroup of Linear Operator Generating a Quasilinear Equations of Evolution. Earthline Journal of Mathematical Sciences, 10(2), 409-421. https://doi.org/10.34198/ejms.10222.409421
Section
Articles