On Some Boundary Value Methods
Abstract
Circumventing order restrictions on numerical methods designed for the integration of stiff initial value problem is the concern here via Boundary Value Method. The attainable order p = k+v and linear stability properties of the methods are discussed. The numerical test on some stiff problems shows that the new methods developed, compare favourably with existing methods, with ODE15s of MATLAB used as reference numerical solution.
References
O. G. Akpomudare and K. O. Muka, New block backward differentiation formulae for stiff initial value problems, Journal of the Nigeria Association of Mathematical Physics 36 (2016), 449-456.
P. Golik Amodio and F. Mazzia, Boundary value methods based on Adams-type method, Applied Numerical Mathematics 18 (1995), 23-25. https://doi.org/10.1016/0168-9274(95)00041-R
P. Amodio, W. L. Golik and F. Mazzia, Variable-step boundary value methods based on reverse Adams schemes and their grid distribution, Applied Numerical Mathematics 18 (1995), 5-21. https://doi.org/10.1016/0168-9274(95)00044-U
L. Brugnano and D. Trigiante, High order multistep methods for boundary value problems, Applied Numerical Mathematics 18 (1985), 79-94. https://doi.org/10.1016/0168-9274(95)00045-V
L. Brugnano and D. Trigiante, Block boundary value methods for linear Hamiltonian systems, Journal of Applied Maths Computation 81 (1997), 49-68. https://doi.org/10.1016/0096-3003(95)00308-8
L. Brugnano and D. Trigiante, Solving Differential Problems by Multistep Initial and Boundary Value, Gordons and Breach Science Publishers Amsterdam, 1998.
L. Brugnano and D. Trigiante, Block implicit methods for ODEs, In: Trigiante, D. (ed.) Recent Trends in Numerical Analysis, Nova Science Publishers Inc., New York, 2001.
J. R. Cash, On the integration of stiff systems of ODEs using extended backward differentiation formulae, Numer. Math. 34 (1980), 235-246. https://doi.org/10.1007/BF01396701
G. Dahlquist, A special stability problem for linear multistep methods, BIT 3 (1963), 27 43. https://doi.org/10.1007/BF01963532
W. H. Enright, Second derivative multistep methods for stiff ordinary differential equations, SIAM Journal Numerical Analysis 11(2) (1974), 321-331. https://doi.org/10.1137/0711029
S. O. Fatunla, Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Academic Press Inc., London, 1989. https://doi.org/10.1016/B978-0-12-249930-2.50012-6
G. C. Nwachukwu, M. N. O. Ikhile and J. Osaghae, On some boundary value methods for stiff IVPs in ODEs, Afrika Matematika 29(5-6), (2018), 731-752. https://doi.org/10.1007/s13370-018-0574-4
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Springer, Berlin, 1996. https://doi.org/10.1007/978-3-642-05221-7
F. Iavernaro and F. Mazzia, Eigenvalues and quasi-eigenvalues of branded Toeplitz matrices: some properties and application, Numerical Algorithm 21 (1999), 323-339. https://doi.org/10.1023/A:1019165614860
F. Iavernaro, F. Mazzia and D. Trigiante, Eigenvalues and quasi-eigenvalues of branded Toeplitz matrices: some properties and application, Numerical Algorithm 31 (2002), 157-170. https://doi.org/10.1023/A:1021197900145
James Ajie, self starting implicit block methods for stiff initial value problems, University of Benin, 2015.
J. D. Lambert, Numerical Methods for Ordinary Differential Equations, Wiley, New York, 1991.
F. Mazzia, Boundary Value Methods for the numerical solution of boundary value problems differential algebraic equations, Bollettino dell Unione Matematica Italiana (7) 11–A (1997), 579-593.
G. C. Nwachukwu and T. Okor, Second derivative generalized backward differentiation formulae for solving stiff problems, IAENG International Journal of Applied Mathematics 48(1) (2018), 1-15.
S. E. Ogunfeyitimi and M. N. O. Ikhile, Second derivative generalized extended backward differentiation formulas for stiff problems. J. Korean Soc. Ind. Appl. Math. 23 (2019), 179-202.
S. E. Ogunfeyitimi and M. N. O. Ikhile, Generalized Second Derivative Linear Multi-Step Methods Based on the Enright, International Journal of Applied Computational Mathematics 6 (2020), 76-87. https://doi.org/10.1007/s40819-020-00827-0
S. E. Ogunfeyitimi and M. N. O. Ikhile, Multi-block boundary value methods for ordinary differential and differential algebraic equations, J. Korean Soc. Ind. Appl. Math. 24(3) (2020), 243-291.
S. E. Ogunfeyitimi and M. N. O. Ikhile, Multi-block generalized Adams-Type integration methods for differential algebraic equations, Int. J. Appl. Comput. Math. 7 (2021), Art. No. 197. https://doi.org/10.1007/s40819-021-01135-x
J. Ehigie, S. Jator, S. Sofoluwe and A. Okunuga, Boundary value technique for initial value problems with continuous second derivative multistep method of Enright, Comput. Appl. Math. 33 (2014), 81-93. https://doi.org/10.1007/s40314-013-0044-4
S. Jator and R. Sahi, Boundary value technique for initial value problems based on Adams-type second derivative methods, Internat. J. Math. Ed. Sci. Tech. 41 (2010), 819-826. https://doi.org/10.1080/00207391003675141
J. Zhang and H. Chen, Asymptotic stability of block boundary value methods for delay differential-algebraic equations, Math. Comput. Simulation 81 (2010), 100-108. https://doi.org/10.1016/j.matcom.2010.07.012
J. Zhang and H. Chen, Block boundary value methods for delay differential equations, Appl. Numer. Math. 60 (2010), 915-923. https://doi.org/10.1016/j.apnum.2010.05.001
L. Brugnano, F. Iavernaro and T. Susca, Hamiltonian BVMs (HBVMs): implementation details and applications, AIP Conf. Proc. 1168 (2009), 723-726. https://doi.org/10.1063/1.3241568
Z. Jingjun, J. Xingzhou and X. Yang, Convergence of block boundary value methods for solving delay differential algebraic equations with index-1 and index 2, Applied Mathematics and Computation 399 (2021), 126034. https://doi.org/10.1016/j.amc.2021.126034
This work is licensed under a Creative Commons Attribution 4.0 International License.