Certain Subclass of Meromorphic β-starlike Functions Associated with a Differential Operator
Abstract
Sharp bounds for the Fekete-Szegö functional $\left|v_1-\xi v_0{ }^2\right|$ are derived for certain class of meromorphic starlike functions $\omega(z)$ of order $\beta$ defined on the punctured open unit disk for which
$$
1-\frac{1}{t}\left(\frac{D^{n+1_{\circ} m} \omega(z)}{D^{n_0 m} \omega(z)}-1\right) \prec \chi(z) \quad\left(t \in \mathbb{C}-\{0\}, \eta \geq 0, \kappa>0, n, m \in \mathbb{N}_0\right)
$$
lie in a region starlike with respect to 1 and symmetric with respect to the real axis.
References
Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235. https://doi.org/10.2140/pjm.1963.13.221
F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proceedings of the American Mathematical Society 20(1) (1969), 8-12. https://doi.org/10.1090/S0002-9939-1969-0232926-9
H. Silverman, K. Suchitra, B. Adolf Stephen and A. Gangadharan, Coefficient bounds for certain classes of meromorphic functions, J. Inequal. Appl. 2008, Article No. 931981, 9 pp. https://doi.org/10.1155/2008/931981
M. K. Aouf, On certain class of meromorphically univalent functions with positive coefficients, Rend. Math. 11(1991), 209-219.
M. Mogra, T. Reddy and O. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Aust. Math. Soc. 32 (1985), 161-176. https://doi.org/10.1017/S0004972700009874
R. M. Ali and V. Ravichandran, Classes of meromorphic α-convex functions, Taiwanese J. Math. 14(4) (2010), 1479-1490. https://doi.org/10.11650/twjm/1500405962
R. M. El-Ashwah, A note on certain meromorphic p-valent functions, Appl. Math. Letters 22 (2009), 1757-1759.
W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992, pp. 157-169.
This work is licensed under a Creative Commons Attribution 4.0 International License.