New Families of Bi-Univalent Functions Governed by Gegenbauer Polynomials

  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
Keywords: holomorphic function, bi-univalent function, Gegenbauer polynomials, Fekete-Szegö problem, coefficient estimates

Abstract

The aim of this article is to initiating an exploration of the properties of bi-univalent functions related to Gegenbauer polynomials. To do so, we introduce a new families \mathbb{T}_\Sigma (\gamma, \phi, \mu, \eta, \theta, \gimel, t, \delta) and \mathbb{S}_\Sigma (\sigma, \eta, \theta, \gimel, t, \delta ) of holomorphic and bi-univalent functions. We derive estimates on the initial coefficients and solve the Fekete-Szeg  problem of functions in these families.

References

E. A. Adegani, S. Bulut and A. A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc. 55(2) (2018), 405-413.

A. G. Alamoush, On subclass of analytic bi-close-to-convex functions, Int. J. Open Problems Complex Analysis 13 (2021), 10-18.

A. Amourah, A. Alamoush and M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palestine Journal of Mathematics 10(2) (2021), 625-632.

S. Altinkaya and S. Yalçin, On a new subclass of bi-univalent functions of Sakaguchi type satisfying subordinate conditions, Malaya Journal of Mathematics 5(2) (2017), 305-309.

S. Altinkaya and S. Yalçin, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf Journal of Mathematics 5(3) (2017), 34-40.

S. Altinkaya and S. Yalçin, Poisson distribution series for certain subclasses of starlike functions with negative coefficients, Annals of Oradea University Mathematics Fascicola 24(2) (2017), 5-8.

H. Bateman, Higher Transcendental Functions, McGraw-Hill, 1953.

S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat 30(6) (2016), 1567-1575. https://doi.org/10.2298/FIL1606567B

S. Bulut and A. K. Wanas, Coefficient estimates for families of bi-univalent functions defined by Ruscheweyh derivative operator, Mathematica Moravica 25(1) (2021), 71-80. https://doi.org/10.5937/MatMor2101071B

M. Caglar, E. Deniz, H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turk. J. Math. 41 (2017), 694-706. https://doi.org/10.3906/mat-1602-25

E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (2013), 49-60. https://doi.org/10.7153/jca-02-05

B. Doman, The Classical Orthogonal Polynomials, World Scientific, 2015. https://doi.org/10.1142/9700

P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

S. S. Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math. 40(2016), 641-646. https://doi.org/10.3906/mat-1503-58

S. M. El-Deeb, T. Bulboaca and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59(2) (2019), 301-314.

M. Fekete and G. Szego ̈, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc. 2 (1933), 85-89. https://doi.org/10.1112/jlms/s1-8.2.85

B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacettepe Journal of Mathematics and Statistics 43(3) (2014), 383-389.

H. O. Guney, G. Murugusundaramoorthy and J. Sokol, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapient. Math. 10 (2018), 70-84. https://doi.org/10.2478/ausm-2018-0006

K. Kiepiela, I. Naraniecka, and J. Szynal, The Gegenbauer polynomials and typically real functions, Journal of Computational and Applied Mathematics 153(1-2) (2003), 273-28. https://doi.org/10.1016/S0377-0427(02)00642-8

A. Legendre, Recherches sur l’attraction des spheroids homogénes, vol. 10, Mémoires présentes par divers savans à l’Académie des Sciences de l’Institut de France, Paris, 1785.

N. Magesh and S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afr. Mat. 29(1-2) (2018), 203-209. https://doi.org/10.1007/s13370-017-0535-3

N. Magesh and J. Yamini, Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions, Tbilisi Math. J. 11(1) (2018), 141-157. https://doi.org/10.32513/tbilisi/1524276036

S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.

W. Nazeer, Q. Mehmood, S. M. Kang and A. U. Haq, An application of Binomial distribution series on certain analytic functions, Journal of Computational Analysis and Applications 26 (2019), 11-17.

A. O. Pall-Szabo and A. K. Wanas, Coefficient estimates for some new classes of bi- Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator, Quaestiones Mathematicae 44 (4) (2021), 495-502. https://doi.org/10.2989/16073606.2020.1727581

S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat. 27(2016), 10-21. https://doi.org/10.1007/s13370-016-0398-z

M. Reimer, Multivariate Polynomial Approximation, Birkhäuser, 2012.

B. Seker, On a new subclass of bi-univalent functions defined by using Salagean operator, Turk. J. Math. 42 (2018), 2891-2896. https://doi.org/10.3906/mat-1507-100

B. Seker and I. Taymur, On subclasses of m-fold symmetric bi-univalent functions, TWMS J. App. and Eng. Math. 11(2) (2021), 598-604.

T. G. Shaba and A. B. Patil, Coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions associated with pseudo-starlike functions, Earthline Journal of Mathematical Sciences 6(2) (2021), 209-223. https://doi.org/10.34198/ejms.6221.209223

T. G. Shaba, On some subclasses of bi-pseudo-starlike functions defined by Salagean differential operator, Asia Pac. J. Math. 8(6) (2021), 1-11. https://doi.org/10.28924/APJM/8-6

H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci. 44 (2020), 327-344. https://doi.org/10.1007/s40995-019-00815-0

H. M. Srivastava, S. Altinkaya and S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A: Sci. 43 (2019), 1873-1879. https://doi.org/10.1007/s40995-018-0647-0

H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc. 44 (2018), 149-157. https://doi.org/10.1007/s41980-018-0011-3

H. M. Srivastava, S. Hussain, A. Raziq and M. Raza, The Fekete-Szego ̈ functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math. 34 (2018), 103-113. https://doi.org/10.37193/CJM.2018.01.11

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009

H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J. 59(3) (2019), 493-503.

H. M. Srivastava, A. K. Wanas and G. Murugusundaramoorthy, Certain family of bi-univalent functions associated with Pascal distribution series based on Horadam polynomials, Surveys in Mathematics and its Applications 16 (2021), 193-205.

H. M. Srivastava, A. K. Wanas and R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry 13 (2021), Art. ID 1230, pp. 1-14. https://doi.org/10.3390/sym13071230

S. R. Swamy, A. K. Wanas and Y. Sailaja, Some special families of holomorphic and Salagean type bi-univalent functions associated with (m,n)-Lucas polynomials, Communications in Mathematics and Applications 11(4) (2020), 563-574. https://doi.org/10.15672/hujms.695858

A. K. Wanas, Horadam polynomials for a new family of λ-pseudo bi-univalent functions associated with Sakaguchi type functions, Afr. Mat. 32 (2021), 879-889. https://doi.org/10.1007/s13370-020-00867-1

A. K. Wanas and N. A. Al-Ziadi, Applications of Beta negative binomial distribution series on holomorphic functions, Earthline Journal of Mathematical Sciences 6(2) (2021), 271-292. https://doi.org/10.34198/ejms.6221.271292

A. K. Wanas and J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline Journal of Mathematical Sciences 4(1) (2020), 71-82. https://doi.org/10.34198/ejms.4120.7182

Published
2021-09-27
How to Cite
Wanas, A. K. (2021). New Families of Bi-Univalent Functions Governed by Gegenbauer Polynomials. Earthline Journal of Mathematical Sciences, 7(2), 403-427. https://doi.org/10.34198/ejms.7221.403427
Section
Articles