Coefficient Estimates of Some Classes of Univalent Functions using Subordination Principle
Abstract
In this work, two classes T(b, λ) and V(b, λ) were defined. Coefficient bounds, Fekete-Szegö functional and Hankel determinants for the classes were obtained. The results obtained generalized some earlier ones.
References
Ş. Altinkaya and S. Yalçin, The Fekete-Szegö problem for a general class of bi-univalent functions satisfying subordinate conditions, Sahand Communications in Mathematical Analysis 5(1) (2017), 1-7.
P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
O. A. Fadipe-Joseph, A. T. Oladipo and A. U. Ezeafulukwe, Modified sigmoid function in univalent function theory, International Journal of Mathematical Sciences and Engineering Applications 7(V) (2013), 313-317.
K. Kuroki and S. Owa, Notes on new class for certain analytic functions, Advances in Mathematics: Scientific Journal 1(2) (2012), 127-131.
S. N. Malik, S. Mahmood, M. Raza, S. Farman, S. Zainab and N. Muhammad, Coefficient inequalities of functions associated with hyberbolic domains, Mathematics 7(1) (2019), 1 11. https://doi.org/10.3390/math7010088
S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker, Inc., New York, 2000. https://doi.org/10.1201/9781482289817
This work is licensed under a Creative Commons Attribution 4.0 International License.