Chatterjea Polynomial Contraction Mapping Theorem in Metric Spaces with Application

  • Clement Boateng Ampadu Independent Researcher
Keywords: Chatterjea contraction, polynomial contraction, metric space, fractional differential equation

Abstract

In this paper, we introduce the notion of polynomial Chatterjea contraction mapping in metric spaces, and obtain a fixed point theorem. Some consequences of the main result and a conjecture are stated. The conjecture is illustrated with an example, and the conjecture is used to show existence and uniqueness of solutions for a certain class of fractional differential equations.

Downloads

Download data is not yet available.

References

Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3, 133-181.

Kannan, R. (1969). Some results on fixed points-II. The American Mathematical Monthly, 76, 405-408. https://doi.org/10.1080/00029890.1969.12000228

Subrahmanyam, P. (1974). Remarks on some fixed point theorems related to Banach's contraction principle. Journal of Mathematical and Physical Sciences, 8, 445-457.

Gassem, F., Alfeedel, H. A. A., Saleh, H. N., Aldwoah, K., Alqahtani, M. H., Tedjani, A. H., & Muflh, B. (2025). Generalizing Kannan fixed point theorem using higher-order metric polynomials with application to fractional differential equations. Fractal and Fractional, 9, 609. https://doi.org/10.3390/fractalfract9090609

Jleli, M., Pacurar, C. M., & Samet, B. (2025). Fixed point results for contractions of polynomial type. Demonstratio Mathematica, 58, 20250098. https://doi.org/10.1515/dema-2025-0098

Chatterjea, S. K. (1972). Fixed-point theorems. Comptes Rendus de l'Académie Bulgare des Sciences, 25, 727-730.

Published
2026-02-09
How to Cite
Ampadu, C. B. (2026). Chatterjea Polynomial Contraction Mapping Theorem in Metric Spaces with Application. Earthline Journal of Mathematical Sciences, 16(2), 237-245. https://doi.org/10.34198/ejms.16226.18.237245