Chatterjea Polynomial Contraction Mapping Theorem in Metric Spaces with Application
Abstract
In this paper, we introduce the notion of polynomial Chatterjea contraction mapping in metric spaces, and obtain a fixed point theorem. Some consequences of the main result and a conjecture are stated. The conjecture is illustrated with an example, and the conjecture is used to show existence and uniqueness of solutions for a certain class of fractional differential equations.
Downloads
References
Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3, 133-181.
Kannan, R. (1969). Some results on fixed points-II. The American Mathematical Monthly, 76, 405-408. https://doi.org/10.1080/00029890.1969.12000228
Subrahmanyam, P. (1974). Remarks on some fixed point theorems related to Banach's contraction principle. Journal of Mathematical and Physical Sciences, 8, 445-457.
Gassem, F., Alfeedel, H. A. A., Saleh, H. N., Aldwoah, K., Alqahtani, M. H., Tedjani, A. H., & Muflh, B. (2025). Generalizing Kannan fixed point theorem using higher-order metric polynomials with application to fractional differential equations. Fractal and Fractional, 9, 609. https://doi.org/10.3390/fractalfract9090609
Jleli, M., Pacurar, C. M., & Samet, B. (2025). Fixed point results for contractions of polynomial type. Demonstratio Mathematica, 58, 20250098. https://doi.org/10.1515/dema-2025-0098
Chatterjea, S. K. (1972). Fixed-point theorems. Comptes Rendus de l'Académie Bulgare des Sciences, 25, 727-730.

This work is licensed under a Creative Commons Attribution 4.0 International License.
.jpg)
