Reich Contraction Mapping Theorem of Integral Type in Metric Spaces with w-Distance
Abstract
In this paper, we introduce the notion of Reich contraction of integral type in metric spaces with w-distance and prove a fixed point theorem. Some conjectures conclude the paper.
Downloads
References
Kannan, R. (1968). Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60, 71-76.
Branciari, A. (2002). A fixed point theorem for mappings satisfying a general contractive condition of integral type. International Journal of Mathematics and Mathematical Sciences, 29, 531-536. https://doi.org/10.1155/S0161171202007524
Kada, O., Suzuki, T., & Takahashi, W. (1996). Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Mathematica Japonica, 44, 381-391.
Liu, Z., Hou, F., Kang, S. M., & Ume, J. S. (2017). On fixed point theorems for contractive mappings of integral type with w-distance. Filomat, 31(6), 1515-1528. https://doi.org/10.2298/FIL1706515L
Liu, Z., Li, X., Kang, S. M., & Cho, S. Y. (2011). Fixed point theorems for mappings satisfying contractive conditions of integral type and applications. Fized Point Theory and Applications, 2011, Article 64. https://doi.org/10.1186/1687-1812-2011-64
Reich, S. (1972). Fixed points of contractive functions. Bollettino dell'Unione Matematica Italiana, 5, 26-42.

This work is licensed under a Creative Commons Attribution 4.0 International License.
.jpg)
