Reich Contraction Mapping Theorem of Integral Type in Metric Spaces with w-Distance

  • Clement Boateng Ampadu Independent Researcher
Keywords: Reich contraction, fixed point theorem, w-distance, metric space

Abstract

In this paper, we introduce the notion of Reich contraction of integral type in metric spaces with w-distance and prove a fixed point theorem. Some conjectures conclude the paper.

Downloads

Download data is not yet available.

References

Kannan, R. (1968). Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60, 71-76.

Branciari, A. (2002). A fixed point theorem for mappings satisfying a general contractive condition of integral type. International Journal of Mathematics and Mathematical Sciences, 29, 531-536. https://doi.org/10.1155/S0161171202007524

Kada, O., Suzuki, T., & Takahashi, W. (1996). Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Mathematica Japonica, 44, 381-391.

Liu, Z., Hou, F., Kang, S. M., & Ume, J. S. (2017). On fixed point theorems for contractive mappings of integral type with w-distance. Filomat, 31(6), 1515-1528. https://doi.org/10.2298/FIL1706515L

Liu, Z., Li, X., Kang, S. M., & Cho, S. Y. (2011). Fixed point theorems for mappings satisfying contractive conditions of integral type and applications. Fized Point Theory and Applications, 2011, Article 64. https://doi.org/10.1186/1687-1812-2011-64

Reich, S. (1972). Fixed points of contractive functions. Bollettino dell'Unione Matematica Italiana, 5, 26-42.

Published
2026-01-09
How to Cite
Ampadu, C. B. (2026). Reich Contraction Mapping Theorem of Integral Type in Metric Spaces with w-Distance. Earthline Journal of Mathematical Sciences, 16(1), 133-140. https://doi.org/10.34198/ejms.16126.11.133140