DFT Treatment of Betazole Tautomerism
Abstract
Betazole belongs to pyrazole type medicines and selectively targets and binds to the H2-type receptors. Tautomerism can only be demonstrated in pyrazole derivatives and not in the pyrazole itself. In the present density functional treatment of tautomers of betazole (within the constraints of density functional theory) calculations have been performed at the level of B3LYP/6-311++G(d,p). Betazole may exhibit 1,3- and 1,5-type proton tautomerism involving pyrazole ring system so that in some tautomers aromaticity of the ring is destroyed. The results have revealed that all the tautomers possess thermo chemically favorable formation values at the standard conditions and are electronically stable. Some quantum chemical and spectral properties of those tautomeric systems as well as nucleus independent chemical shift (NICS) values for the aromatic ones have been obtained and discussed.
References
Windholz, M., & Budavari, S. (Eds.) (1983). The Merck Index (10th ed). Rahway, USA: Merck & Co. Inc.
Sudhi, B.S., & Shaji, T.B. (2022). A review on heterocyclic compound pyrazole. World Journal of Pharmaceutical Research, 11(12), 731-746.
Eldebss, T.M.A., Eldebss, M.T.M., & Solimana, S.M.A. (2023). Utilities of pyrazolone and its derivative in heterocyclic synthesis and their biological applications. Egypt. J. Chem., 66(1), 453-478. https://doi.org/10.21608/EJCHEM.2022.123629.5521
Boushey, H. A., & Holtzman, M. J. (1984). Histamine, serotonin, and the ergot alkaloids. In B. G. Katzung (Ed.), Basic and clinical pharmacology. Los Altos, California: Lange Medical Publications.
Wruble, L.D., Cummins, A.J., Goldenberg, J., & Schapiro, H. (1967). The effect of intravenous histalog on gastric secretion in man. Digestive Diseases and Sciences, 12(11), 1087-1090. PMID 6057052. S2CID 8990827. https://doi.org/10.1007/BF02233873
Stoller, J.L., Holubitsky, I.B., Harrison, R.C., & Munro, A.I. (1970). Complications of the histalog test of gastric acid secretion. Digestive Diseases and Sciences, 15(7), 647- 651. PMID 4951403. S2CID 37678802. https://doi.org/10.1007/BF02236024
Hammond, J.B., & Offen, W.W. (1988). Effect of nizatidine and cimetidine on betazole- stimulated gastric secretion of normal subjects: comparison of effects on acid, water, and pepsin. Am. J. Gastroenterol, 83(1), 32-6. PMID 2892392.
Jones, R.G., & Mann, M.J. (1953). New methods of synthesis of β-aminoethylpyrazole. Journal of the American Chemical Society, 75(16), 4048-4052. https://doi.org/10.1021/ja01112a050
Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., Al-aizari, F.A., & Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
Romero-Fernandez, M., & Paradisi, F. (2021). Biocatalytic access to betazole using a one-pot multienzymatic system in continuous flow. Green Chem., 23, 4594. https://doi.org/10.1039/D1GC01095F
Llanos, O.L., Becker, S.N., & Thompson, J.C. (1978). Benign gastric ulcer in a patient with betazole-fast achlorhydria. Arch Surg., 113(2), 202-203. https://doi.org/10.1001/archsurg.1978.01370140092020
Spitz, I.M., Novis, B.H., Ebert, R., Trestian, S., LeRoith, D., & Creutzfeldt, W. (1982). Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism, 31(4), 380-382. https://doi.org/10.1016/0026-0495(82)90114-7
Ishimori, A., Sakurada, H., Kawamura, T., Yamagata, S., Miura, Y., Tsuda, K., & Yamagata, S. (1975). Comparison of dose-response curves between acid and pepsin to betazole hydrochloride in the dog with gastric fistula. Gastroenterol Jpn., 10, 221-224. https://doi.org/10.1007/BF02776656
Laureta, H.C., Villamayor, C., & Calubiran, O.C. (1983). Determination of the dose of betazole that stimulates peak or maximum acid output among Filipinos. The Journal of the Manila Medical Society, 18(2), 31-35.
Karacadag, S., & Klotz, A.P.A. (1969). Comparative study of the effects of histamine and betazole hydrochloride on secretory capacity of the human stomach. American Journal of Gastroenterology (Springer Nature), 52(5), 439-444.
Marciano, T., & Wershil, B.K. (2007). The ontogeny and developmental physiology of gastric acid secretion. Curr. Gastroenterol. Rep., 9, 479-481. https://doi.org/10.1007/s11894-007-0063-7
Kabi, A.K., Sravani, S., Gujjarappa, R., Garg, A., Vodnala, N., Tyagi, U., Kaldhi, D., Velayutham, R., Gupta, S., & Malakar, C.C. (2022). An introduction on evolution of azole derivatives in medicinal chemistry, overview on biological activities of pyrazole derivatives. In B. P. Swain (Ed.), Nanostructured biomaterials: Materials horizons - from nature to nanomaterials. Singapore: Springer. https://doi.org/10.1007/978-981-16-8399-2_7
Larina, L.I. (2018). Tautomerism and structure of azoles: Nuclear magnetic resonance spectroscopy. In E. F. V. Scriven & C. A. Ramsden (Eds.), Advances in heterocyclic chemistry (Vol. 124, pp. 233-321). New York: Academic Press. https://doi.org/10.1016/bs.aihch.2017.06.003
Smeyers, Y.G., & Muñoz-Caro, C. (1989). Comparative CNDO/2 study of the molecular determinants for H2-receptor agonist activity in histamine and betazole agonist activity in histamine and betazole. European Journal of Medicinal Chemistry, 24(4), 411-414. https://doi.org/10.1016/0223-5234(89)90085-8
Taherpour, A.A., Chegeni, M.M.F., Khodaei, M.M., & Tamasoki, N. (2017). A first principle DFT study of solvent effects on metiamide tautomers and imaginary interactions with H2-receptors. J. Iran Chem. Soc., 14, 1613-1632. https://doi.org/10.1007/s13738-017-1102-4
Taherpour, A., & Rahimizadeh, R. (2016). Study of solvent effects on structural and conformational properties of cimetidine tautomers. Med. Chem. Res., 25, 2042-2057. https://doi.org/10.1007/s00044-016-1612-0
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Reutov, O. (1970). Theoretical principles of organic chemistry. Moscow: Mir Pub.
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
Betazole. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=105-20-4 (retrieved 2023-06-14) (CAS RN: 105-20-4).
J-GLOBAL. http://jglobal.jst.go.jp/en/redirect?Nikkaji_No=J5.041E
PubChem. https://pubchem.ncbi.nlm.nih.gov/substance/?source=15745&sourceid=8041967-188166155
Hitchcock, S.A., & Pennington, L.D. (2006). Structure-brain exposure relationships. J. Med. Chem., 49 (26), 7559-7583. PMID: 17181137. https://doi.org/10.1021/jm060642i
Shityakov, S., Neuhaus, W., Dandekar, T., & Förster, C. (2013). Analysing molecular polar surface descriptors to predict blood-brain barrier permeation. International Journal of Computational Biology and Drug Design, 6(1-2), 146-56. PMID: 23428480. https://doi.org/10.1504/IJCBDD.2013.052195
Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.
Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209
Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221
Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088
Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem., Soc.Rev., 44(18), 6597-6615. https://doi.org/10.1039/C5CS00114E
Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.
Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753
Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458
Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d
Corminboeuf, C., Heine, T., & Weber, J. (2003). Evaluation of aromaticity: A new dissected NICS model based on canonical orbitals. Phys. Chem. Chem. Phys., 5, 246-251. https://doi.org/10.1039/B209674A
Stanger, A. (2006). Nucleus-ındependent chemical shifts (NICS): Distance dependence and revised criteria for aromaticity and antiaromaticity. The Journal of Organic Chemistry, 71(3), 883-893. https://doi.org/10.1021/jo051746o
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P.R. (2005). Nucleus-ındependent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105(10), 3842-3888. https://doi.org/10.1021/cr030088+
Katritzky, A.R., & Lagowski, J.M. (1971). The principles of heterocyclic chemistry, London: Chapman and Hall.
This work is licensed under a Creative Commons Attribution 4.0 International License.