Phellandrenes and Some Species from Them - A DFT Treatment
Abstract
Phellandrenes are naturally occurring cyclic dienes belonging to cyclic monoterpene class and have many medicinal applications. In the present study, some resonance stabilized radicals from α- and β-phellandrene and also some closed shell structures from those radicals have been investigated within the constraints of density functional theory and basis set employed. For structure optimizations of the closed-shell and open-shell structures, B3LYP/6-311++G(d,p) and UB3LYP/6-311++G(d,p) level of theories have been adopted, respectively. All the systems considered have been found to be thermo chemically favorable and electronically stable. Various structural, quantum chemical and spectral properties of them have been obtained and discussed.
References
Thangaleela, S., Sivamaruthi, B.S., Kesika, P., Tiyajamorn, T., Bharathi, M., & Chaiyasut, C. (2022). A narrative review on the bioactivity and health benefits of alpha-phellandrene. Sci. Pharm., 90(4), 57. https://doi.org/10.3390/scipharm90040057
Zhang, J‑H., Sun, H‑L., Chen, S‑Y, Zeng, L., & Wang, T‑T. (2017). Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium. Bot. Stud., 58,13. https://doi.org/10.1186/s40529-017-0168-8
Zhang, P.Y., Chen, K.S., He, P.Q., Liu, S.H., & Jiang, W.F. (2008). Effects of crop development on the emission of volatiles in leaves of Lycopersicon esculentum and its inhibitory activity to Botrytis cinerea and Fusarium oxysporum. J. Integr. Plant Biol., 50(1), 84-91. https://doi.org/10.1111/j.1744-7909.2007.00597.x
Tisserand, R., & Young, R. (2013). Essential oil safety: A guide for health care professionals; Amsterdam (The Netherlands): Elsevier Health Sciences. ISBN 0702054348.
Dhakad, A.K., Pandey, V.V., Beg, S., & Rawat, J.M. (2018). Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: A review. J. Sci. Food Agri., 98, 833-848. https://doi.org/10.1002/jsfa.8600
LOTUS. Available online https://lotus.naturalproducts.net/compound/lotus_id/LTS0234318
Bizzo, R.H., Hovell, A.M.C., & Rezende, C.M. (2009). Brazilian essential oil: General view, developments, and perspectives. Quim. Nova, 32(3), 588-594. https://doi.org/10.1590/S0100-40422009000300005
Iscan, G., Kirimer, N., Demirci, F., Demirci, B., Noma, Y., & Başer, K.H. (2012). Biotransformation of (−)-(R)-α-phellandrene: Antimicrobial activity of its major metabolite. Chem. Biodivers., 9, 1525-1532. https://doi.org/10.1002/cbdv.201100283
Gaich, T., & Mulzer, J. (2012). Chiral pool synthesis: Starting from terpenes. In E.M. Carreira & H. Yamamoto (Eds.), Comprehensive Chirality (1st ed., Vol. 2, pp. 163-206). Amsterdam, The Netherlands: Elsevier.
Wu, C-C., Lin, C-L., Huang, C-Y., Hsieh, S., Liu, C-H., & Hsieh, S-L. (2019). α Phellandrene enhances the immune response and resistance against Vibrio alginolyticus in white shrimp (Litopenaeus vannamei). Fish & Shellfish Immunology, 84, 1108-1114. https://doi.org/10.1016/j.fsi.2018.11.013
Chaaban, A., Richardi, V.S., Carrer, A.R., Brum, J.S., Cipriano, R.R., Martins, M.A.N., Silva, C.E.N., Deschamps, C., & Molento, M.B. (2019). Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): Histological and ultrastructural biomarkers assessment. Pesticide Biochemistry and Physiology, 153, 17-27. https://doi.org/10.1016/j.pestbp.2018.10.002
Oonmetta-Aree, J., Suzuki, T., Gasaluck, P., & Eumkeb, G. (2006). Antimicrobial properties and action of galangal (Alpinia galangal Linn.) on Staphylococcus aureus. LWT-Food Sci. Technol., 39, 1214-1220. https://doi.org/10.1016/j.lwt.2005.06.015
Oliveira, M.G., Marques, R.B., Santana, M.F., Santos, A.B., Brito, F.A., Barreto, E.O., Sousa, D.P., Almeida, F.R., Badauê-Passos, D., Antoniolli, A.R., & Quintans-Júnior, L.J. (2012). α-Terpineol reduces mechanical hypernociception and inflammatory response. Basic Clin. Pharmacol. Toxicol., 111, 120-125. https://doi.org/10.1111/j.1742-7843.2012.00875.x
Kawata, J., Kameda, M.,& Miyazawa, M. (2008). Cyclooxygenase-2 inhibitory effects of monoterpenoids with a p-methane skeleton. Int. J. Essent. Oil Ther., 2(4), 145-148.
Siqueira, H.D.S., Neto, B.S., Sousa, D.P., Gomes, B.S., da Silva, F.V., Cunha, F.V.M., Wanderley, C., Pinheiro, G., Cândido, A., Wong, D., Ribeiro, R.A., Lima-Júnior, R.C.P., & Oliveira, F.A. (2016). α-Phellandrene, a cyclic monoterpene, attenuates inflammatory response through neutrophil migration inhibition and mast cell degranulation. Life Sci., 160, 27-33. https://doi.org/10.1016/j.lfs.2016.07.008
Lima, D.F., Brandão, M.S., Moura, J.B., Leitão, J.M., Carvalho, F.A., Miúra, L.M., Leite, J.R., Sousa, D.P., & Almeida, F.R.(2012). Antinociceptive activity of the monoterpene α-phellandrene in rodents: Possible mechanisms of action. J. Pharm. Pharmacol., 64, 283-292. https://doi.org/10.1111/j.2042-7158.2011.01401.x
Yamamoto, S., Ohsawa, M., & Ono, H. (2013). Contribution of TRPV1 receptor- expressing fibers to spinal ventral root after-discharges and mechanical hyperalgesia in a spared nerve injury (SNI) rat model. J. Pharmacol. Sci., 121, 9-16. https://doi.org/10.1254/jphs.12213FP
Dhaka, A., Murray, A.N., Mathur, J., Earley, T.J., Petrus, M.J., & Patapoutian, A. (2007). TRPM8 is required for cold sensation in mice. Neuron, 54, 371-378. https://doi.org/10.1016/j.neuron.2007.02.024
Piccinelli, A.C., Santos, J.A., Konkiewitz, E.C., Oesterreich, S.A., Formagio, A.S., Croda, J.H., Ziff, E.B., & Kassuya, C.A. (2015). Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinus terebinthifolius fruits in a neuropathic pain model. Nutr. Neurosci., 18, 217-224. https://doi.org/10.1179/1476830514Y.0000000119
Pinheiro-Neto, F.R., Lopes, E.M., Acha, B.T., Gomes, L., Dias, W.A., Reis Filho, A., Leal, B.S., Rodrigues, D., Silva, J., Dittz, D., Ferreira, P.M.P., & de Castro Almeida, F.R. (2021). α-Phellandrene exhibits antinociceptive and tumor-reducing effects in a mouse model of oncologic pain. Toxicol. Appl. Pharmacol., 418, 115497. https://doi.org/10.1016/j.taap.2021.115497
Heal, C.F., Banks, J.L., Lepper, P.D., Kontopantelis, E., & van Driel, M.L. (2016). Topical, antibiotics for preventing surgical site infection in wounds healing by primary intention. Cochrane Database Syst. Rev., 11, Cd011426. https://doi.org/10.1002/14651858.CD011426.pub2
Scherer, de C.M.M., Marques, F.M., Figueira, M.M., Peisino, M., Schmitt, E., Kondratyuk, T.P., Endringer, D.C., Scherer, R., & Fronza, M. (2019). Wound healing activity of terpinolene and α-phellandrene by attenuating inflammation and oxidative stress in vitro. J. Tissue. Viability, 28, 94-99. https://doi.org/10.1016/j.jtv.2019.02.003
Nedelec, B., Ghahary, A., Scott, P.G., & Tredget, E.E. (2000). Control of wound contraction. Basic and clinical features. Hand Clin., 16, 289-302. https://doi.org/10.1016/S0749-0712(21)00204-3
Gonçalves, R.L.G., Cunha, F.V.M., Sousa-Neto, B.P.S., Oliveira, L.S.A., Lopes, M.E., Rezende, D.C., Sousa, I.J.O., Nogueira, K.M., Souza, L.K.M., Medeiros, J.V.R., Wong, D.V.T., Pereira, V.M.P., Lima-Júnior, R.C.P., Sousa, D.P., Oliveira, C.P.C., Almeida, F.R.C., & Oliveira, de F. A. (2020). α-Phellandrene attenuates tissular damage, oxidative stress, and TNF-α levels on acute model ifosfamide-induced hemorrhagic cystitis in mice. Naunyn-Schmiedeberg’s Arch Pharmaco., 393, 1835-1848. https://doi.org/10.1007/s00210-020-01869-3
Baldwin, J.E. & Krueger, S.M. (1969). Stereoselective photochemical electrocyclic valence isomerizations of .alpha.-phellandrene conformational isomers. J. Am. Chem. Soc., 91(23), 6444-6447. https://doi.org/10.1021/ja01051a044
Formighieri, C., & Melis, A. (2014). Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures. Arch Microbiol., 196, 853-861. https://doi.org/10.1007/s00203-014-1024-9
Lafever, R.E., & Croteau, R. (1993). Hydride Shifts in the Biosynthesis of the p menthane monoterpenes α-terpinene, γ-terpinene, and β-phellandrene. Archives of Biochemistry and Biophysics, 301(2), 361-366. https://doi.org/10.1006/abbi.1993.1156
Miller, D.R., & Borden, J.H. (1990). β-Phellandrene: Kairomone for pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). J. Chem. Ecol., 16, 2519-2531. https://doi.org/10.1007/BF01017475
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB. 37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
This work is licensed under a Creative Commons Attribution 4.0 International License.