Charged Forms of Diacetone Diperoxide - DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: DADP, diacetone diperoxide, peroxide explosives, explosives, impact sensitivity

Abstract

Diacetone diperoxide (DADP) is one of the sensitive and powerful organic peroxide explosives like its trimeric analogue TATP. Presently, some ionic forms of it have been investigated within the limitations of density functional theory at the level of UB3LYP/6-311++G(d,p). Various properties (including structural, electronic, spectral and quantum chemical) have been obtained and discussed. The studied mono and dianions having different multiplicity states have been found to be stable but monocation form decomposed.

References

Wolffenstein, R. (1895). Ueber die Einwirkung von Wasserstoffsuperoxyd auf Aceton und Mesityloxyd. Ber. Dtsch. Chem. Ges., 28(2), 2265-2269. https://doi.org/10.1002/cber.189502802208

Matyas, R., & Pachman, J. (2010). Study of TATP: Influence of reaction conditions on product composition. Propell. Explos. Pyrotech., 35, 31-37. https://doi.org/10.1002/prep.200800044

Jiang, H., Chu, G., Gong, H., & Qiao, Q. (1999). Tin chloride catalyzed oxidation of acetone with hydrogen peroxide to tetrameric acetone peroxide. J. Chem. Res., 28(4), 288-289. https://doi.org/10.1039/a809955c

Bali, M.S., Wallace, L., Day, A.I., & Armitt, D. (2014). Cyclic pentanone peroxide: Sensitiveness and suitability as a model for triacetone triperoxide. Journal of Forensic Sciences, 59, 936-942. https://doi.org/10.1111/1556-4029.12439

Oxley, J., Smith, J.L., Huang, J., & Luo, W. (2009). Destruction of peroxide explosives. Journal of Forensic Sciences, 54(5), 1029-1033. https://doi.org/10.1111/j.1556-4029.2009.01130.x

Matyáš, R., Selesovsky, J., & Musil, T. (2012). Sensitivity to friction for primary explosives. J. Hazard. Mater., 213-214, 236-241. https://doi.org/10.1016/j.jhazmat.2012.01.085

Matyáš, R., Pachman, J., & Ang, H.-G. (2009). Study of TATP: Spontaneous transformation of TATP to DADP. Propell. Explos. Pyrot., 34(6), 484-488. https://doi.org/10.1002/prep.200800043

Oxley, C., Smith, J.L., Luo, W., & Brady, J. (2009). Determining the vapor pressures of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD). Propell. Explos. Pyrot., 34(6), 539-543. https://doi.org/10.1002/prep.200800073

Oxley, J.C., Smith, J.L., Steinkamp, L., & Zhang, G. (2013). Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) formation: Part 2. Propell. Explos. Pyrot., 38(6), 841-851. https://doi.org/10.1002/prep.201200215

Oxley, J.C., Smith, J.L., Bowden, P.R., & Rettinger, R.C. (2013). Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) formation: Part I. Propell. Explos. Pyrot., 38(2), 244-254. https://doi.org/10.1002/prep.201200116

Landenberger, K.B., Bolton, O., & Matzger, A.J. (2015). Energetic-energetic cocrystals of diacetone diperoxide (DADP): Dramatic and divergent sensitivity modifications via cocrystallization. J. Am. Chem. Soc., 137, 5074-5079. https://doi.org/10.1021/jacs.5b00661

Bowden, P.R., Tappan, B.C., Manner, V.W., Preston, D.N., &. Scott, B.L. (2017). Characterization of diacetone diperoxide (DADP). AIP Conference Proceedings, 1793, 040010. https://doi.org/10.1063/1.4971504

Kahnooji, M., Pandas, H.M., Mirzaei, M., & Peyghan, A.A. (2015). Explosive properties of nanosized diacetone diperoxide and its nitro derivatives: a DFT study. Monatsh Chem., 146(9), 1401-1408. https://doi.org/10.1007/s00706-015-1419-6

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Vilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Norman, R.O.C. (1970). Principles of organic synthesis. London: Methuen.

Fuson, R.C. (1962). Reactions of organic compounds. New York: Wiley.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

Published
2021-11-30
How to Cite
Türker, L. (2021). Charged Forms of Diacetone Diperoxide - DFT Treatment. Earthline Journal of Chemical Sciences, 7(1), 53-65. https://doi.org/10.34198/ejcs.7122.5365
Section
Articles