1,3,5-Triamino-2,4,6-trinitrobenzene and Magnesium Interaction-A DFT Treatment
Abstract
1,3,5-Triamino-2,4,6-trinitrobenzene, known as TATB, is an insensitive energetic material. On the other hand, certain metals like Al, Mg etc., are often involved in formulation of certain ammunition to increase the heat output of the composite. In the present study, the interaction of TATB and magnesium is considered in TATB+Mg and TATB+2Mg composites within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). The magnesium component disturbs TATB molecule mainly conformationally without causing any bond rupture. The composite formation is favorable, exothermic and they are electronically stable. As the magnesium content increases, the composites become more sensitive to impulse stimulus. Certain physicochemical, quantum chemical and spectral data are collected and discussed.
References
C.L. Jacson and J.F. Wing, On tribromonitrobenzol (LIX), J. Am. Chem. Soc. 10 (1888), 283.
C.L. Jacson and J.F. Wing, On the action of nitric acid on symmetrical trichlorobenzene (LIII), J. Am. Chem. Soc. 10 (1887), 348.
R. Meyer, J. Köhler and A. Homburg, Explosives, Weinheim: Wiley-VCH, 2002.
F. Taylor, Jr., Synthesis of new high energy explosives (II), derivatives of 1,3,5-tribromo- 2,4,6-trinitrobenzene, US Naval Ordnance Laboratory report, NAVORD 4405 (1956).
H. Cady and A.C. Larson, The crystal structure of 1,3,5-triamino,-2,4,6-trinitrobenzene, Acta Cryst. 18 (1965), 485-496. https://doi.org/10.1107/S0365110X6500107X
W.M. Trott and A.M. Renlund, Single-pulse Raman scattering study of triaminotrinitrobenzene under shock compression, J. Phys. Chem. 92 (21) (1988), 5921- 5925. https://doi.org/10.1021/j100332a015
V.D. Gupta and B.L. Deopura, Low-frequency neutron spectrum of 1,3,5-triamino-2,4,6- trinitrobenzene, Mol. Phys. 19 (1970), 589-592. https://doi.org/10.1080/00268977000101621
B.L. Deopura and V.D. Gupta, Vibration spectra of 1,3,5-triamino-2,4,6-trinitrobenzene, J. Chem. Phys. 54 (1970), 4013-4019. https://doi.org/10.1063/1.1675458
J.R. Kolb and H.F. Rizzo, Growth of 1,3,5-triamino-2,4,6,-trinitrobenzene(TATB) 1, Prop. Exp. Pyrotech. 4 (1979), 10-16. https://doi.org/10.1002/prep.19810060202
A.D. Britt, W.B. Moniz, G.C. Chingas, D.W. Moore, C.A. Heller and C.L. Ko, Free radicals of TATB, Prop. Exp. Pyrotech. 6 (1981), 94-95. https://doi.org/10.1002/prep.19810060403
T.G. Towns, Vibrational spectrum of 1,3,5-triamino-2,4,6-trinitrobenzene, Spectrochim. Acta A 39 (1983), 801-804. https://doi.org/10.1016/0584-8539(83)80020-8
M. Farber and R.D. Srivastava, Thermal decomposition of TATB, Combustion and Flame 42 (1981), 165-171. https://doi.org/10.1016/0010-2180(81)90155-3
J. Sharma, W.L. Garrett, F.J. Owens and V.L. Vogel, X-Ray photoelectron study of electronic structure and ultraviolet and isothermal decomposition of TATB, J. Phys. Chem. 86 (1982), 1657-1661. https://doi.org/10.1021/j100206a034
E. Catalano and P. Crawford, An enthalpic study of the thermal decomposition of TATB, Thermochim. Acta 61 (1983), 23-36. https://doi.org/10.1016/0040-6031(83)80301-3
P.C. Harihan, W.S. Koski, J.J. Kaufman and R.S. Miller, Ab initio MODPOT/VRDDO/MERGE calculations on energetic compounds, iii. nitroexplosives: polyaminopolynitrobenzenes (Including DATD, TATB, and Tetryl) , Int. J. Quant. Chem. 23 (1983), 1493-1504. https://doi.org/10.1002/qua.560230431
A.J. Davidson, R.P. Dias, D.M. Dattelbaum and C.S. Yoo, “Stubborn” triaminotrinitrobenzene: unusually high chemical stability of a molecular solid to 150 GPa, J. Chem. Phys. 135 (2011), 174507/1-174507/5. https://doi.org/10.1063/1.3658385.
D.A. Tariq, The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502, J. Applied Physics 122 (2017), 035902/1-035902/8. https://doi.org/10.1063/1.498938.
L.L. Stevens, N. Velisavljevic, D.E. Hooks and D.M. Dattelbaum, Hydrostatic compression curve for triamino-trinitrobenzene determined to 13.0 GPa with powder X-Ray diffraction, Prop. Explos. Pyrotech. 30(4) (2008), 286-295. https://doi.org/10.1002/prep.200700270
W. Yu, T. Zhang, J. Zuo, Y. Huang, G. Li, C. Han, J. Li and H. Huang, Effect of microwave irradiation on TATB explosive (II): Temperature response and other risk, J. Hazardous Materials 173(1-3) (2010), 249-252. https://doi.org/10.1016/j.jhazmat.2009.07.152
W. Li Yuan, G.H. Tao, L. Zhang, Z. Zhang, Y. Xue, L. He, J. Huang and W. Yu, Super impact stable TATB explosives recrystallized by bicarbonate ionic liquids with a record solubility, Sci. Rep. 10 (2020), 4477. https://doi.org/10.1038/s41598-020-61470-9
M.R. Manaa and L.E. Fried, Internal rotation in energetic systems: TATB, J. Phys. Chem. A 105 (27) (2001), 6765-6768. https://doi.org/10.1021/jp010890k
I.V. Omelchenko, O.V. Shishkin, L. Gorb, F. Hill and J. Leszczynski, Properties, aromaticity, and substituents effects in poly nitro- and amino-substituted benzenes, Struct. Chem. 23 (2012), 1585-1597. https://doi.org/10.1007/s11224-012-9971-8
C. Zhang, X. Cao and B. Xiang, Sandwich complex of TATB/Graphene: An approach to molecular monolayers of explosives, J. Phys. Chem. C 114 (51) (2010), 22684-22687. https://doi.org/10.1021/jp1104505
R.S. Patil, S. Radhakrishnan, P.M. Jadhav, V.D. Ghule and T. Soman, Quantum- chemical studies on TATB processes, Journal of Energetic Materials 28(2) (2010), 98-113. https://doi.org/10.1080/07370650903222569
R. Ahmadi, Study of thermodynamic parameters of (TATB) and its fullerene derivatives with different number of Carbon (C20, C24, C60), in different conditions of temperature, using density functional theory, Int. J. Nano Dimens. 8 (3) (2017), 250-256.
L. Türker, Interaction of TATB with Cu and Cu+1. A DFT study, Defence Technology 15(1) (2019), 27-37. https://doi.org/10.1016/j.dt.2018.05.001
J.J.P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208
J.J.P. Stewart, Optimization of parameters for semi empirical methods II. Application, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209
A.R. Leach, Molecular Modeling, Essex: Longman, 1997.
P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.
W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, J. Phys. Rev.140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.
C.J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.
A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159
C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.
P. Pulay, J. F. Hinton and K. Wolinski, Efficient implementation of the GIAO method for magnetic properties: theory and application, in: Tossell J.A. (eds.), Nuclear Magnetic Shieldings and Molecular Structure, NATO ASI Series (Series C: Mathematical and Physical Sciences), 386, pp. 243-262, Dordrecht: Springer, 1993. https://doi.org/10.1007/978-94-011-1652-7_12
W.J. Hehre, L. Radom, P.R. van Schleyer and J.A. Pople, Ab Initio Molecular Orbital Theory, New York: Wiley, 1986.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.
V. Anbu, K.A. Vijayalakshmi, R. Karunathan, A.D. Stephen and P.V. Nidhin, Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis, Arabian Journal of Chemistry 12(5) (2019), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
N.R. Badders, C. Wei, A.A. Aldeeb, W.J. Rogers and M.S. Mannan, Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors, Journal of Energetic Materials 24 (2006), 17-33. https://doi.org/10.1080/07370650500374326
V.I. Minkin, M.N. Glukhovtsev and B.Y. Simkin, Aromaticity and Antiaromaticity: Electronic and Structural Aspects, New York: Wiley, 1994.
P.R. Schleyer and H. Jiao, Introduction: aromaticity, Pure Appl. Chem. 68 (1996), 209- 218. http://dx.doi.org/10.1351/pac199668020209
M.N. Glukhovtsev, Aromaticity today: Energetic and structural criteria. J. Chem. Educ. 74 (1997), 132-136. https://doi.org/10.1021/ed074p132
T.M. Krygowski, M.K. Cyranski, Z. Czarnocki, G. Hafelinger and A.R. Katritzky, Aromaticity: A theoretical concept of immense practical importance, Tetrahedron 56 (2000), 1783-1796. https://doi.org/10.1016/S0040-4020(99)00979-5
P.R. Schleyer, Introduction: Aromaticity, Chem. Rev. 101 (2001), 1115-1118. https://doi.org/10.1021/cr0103221
M.K. Cyranski, T.M. Krygowski, A.R. Katritzky and P.R. Schleyer, To what extent can aromaticity be defined uniquely?, J. Org. Chem. 67 (2002), 1333-1338. https://doi.org/10.1021/jo016255s
P.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N.J.R.E. Hommes, Nucleus- independent chemical shifts: A simple and efficient aromaticity probe, J. Am. Chem. Soc. 118 (1996), 6317-6318. https://doi.org/10.1021/ja960582d
This work is licensed under a Creative Commons Attribution 4.0 International License.