On Geometry of Some Subspaces in Hornich Space

  • Xiaobin Wu Department of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
Keywords: Hornich space, Hornich operation, univalent functions

Abstract

Let $\calH$ be the collection of all locally univalent analytic functions $f$ defined on the unit disk $\mathbb{D}$ with the normalization $f(0)=f^{\prime}(0)-1=0$, and $\calS\subseteq \mathcal{H}$ be the class of all univalent functions. For $f,g\in \mathcal{H}$ and $r\in \mathbb{C}$, the Hornich operators are defined as

$$r\odot f(z):=\int_0^z\{f'(\xi)\}^r\mathrm{d}\xi \quad\text{and}\quad f\oplus g(z):=\int_0^zf'(\xi)g'(\xi)\mathrm{d}\xi.$$

We study geometric properties of some subclasses of $\calS$ in the sense of the Hornich space $(\mathcal{H},\odot , \oplus )$. In fact, we prove that the classes of strongly convex functions of order $\beta$, Noshiro-Warschawski functions, and strongly Ozaki close-to-convex functions are all convex in $(\mathcal{H},\odot , \oplus )$, which generalize some known results. Meanwhile, for $M,N\in\calS$, let $T[M,N]:=\{(r,s)\in\mathbb{C}^2:r \odot f \oplus s \odot g\in N,\ for\ \forall f,g\in M \}$. We give the precise descriptions of $T[M,N]$ for some $M,N\in\calS$.

References

Aksent'ev, L. A., & Nezhmetdinov, I. R. (1982). Sufficient conditions for univalence of certain integral representations. Trudy Sem. Kraev. Zadacham, 18, 3–11, 223.

Ali, M. F., & Vasudevarao, A. (2018). On certain families of analytic functions in the Hornich space. Computational Methods and Function Theory, 18(4), 643–659. https://doi.org/10.1007/s40315-018-0244-4

Andreev, V. V., Bekker, M. B., & Cima, J. A. (2023). Paatero's classes V(k) as subsets of the Hornich space. Computational Methods and Function Theory, 23(4), 689–696. https://doi.org/10.1007/s40315-022-00472-2

Astala, K., & Gehring, F. W. (1986). Injectivity, the BMO norm and the universal Teichmüller space. Journal d’Analyse Mathématique, 46, 16–57. https://doi.org/10.1007/BF02796572

Bhowmik, B. (2012). On concave univalent functions. Mathematische Nachrichten, 285(5–6), 606–612. https://doi.org/10.1002/mana.201000063

Breaz, D., & Güney, H. Ö. (2008). On the univalence criterion of a general integral operator. Journal of Inequalities and Applications. https://doi.org/10.1155/2008/702715

Ehrenborg, R. (2000). The Hankel determinant of exponential polynomials. American Mathematical Monthly, 107(6), 557–560. https://doi.org/10.2307/2589352

Eker, S., Lecko, A., Çekiç, B., & Şeker, B. (2023). The second Hankel determinant of logarithmic coefficients for strongly Ozaki close-to-convex functions. Bulletin of the Malaysian Mathematical Sciences Society, 46(6), Paper No. 183. https://doi.org/10.1007/s40840-023-01580-5

Hornich, H. (1969). Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen. Monatshefte für Mathematik, 73, 36–45. https://doi.org/10.1007/BF01297700

Hotta, I., & Wang, L. (2017). Quasiconformal extendability of integral transforms of Noshiro-Warschawski functions. Rocky Mountain Journal of Mathematics, 47(1), 185–204. https://doi.org/10.1216/RMJ-2017-47-1-185

Janowski, W. (1973). Some extremal problems for certain families of analytic functions. I. Annales Polonici Mathematici, 28, 297–326. https://doi.org/10.4064/ap-28-3-297-326

Kapoor, G. P., & Mishra, A. K. (2007). Coefficient estimates for inverses of starlike functions of positive order. Journal of Mathematical Analysis and Applications, 329(2), 922–934. https://doi.org/10.1016/j.jmaa.2006.07.020

Kim, Y. C., Ponnusamy, S., & Sugawa, T. (2004). Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives. Journal of Mathematical Analysis and Applications, 299(2), 433–447. https://doi.org/10.1016/j.jmaa.2004.03.081

Kim, Y. J., & Merkes, E. P. (1974). On certain convex sets in the space of locally schlicht functions. Transactions of the American Mathematical Society, 196, 217–224. https://doi.org/10.2307/1997024

Kim, Y. J., & Merkes, E. P. (1974). On certain convex sets in the space of locally schlicht functions. Transactions of the American Mathematical Society, 196, 217-224.

Kumar, S., & Sahoo, S. K. (2020). Preserving properties and pre-Schwarzian norms of nonlinear integral transforms. Acta Mathematica Hungarica, 162(1), 84–97. https://doi.org/10.1007/s10474-020-01027-4

Lamprecht, M. (2007). Starlike functions in the Hornich space. Computational Methods and Function Theory, 7(2), 573–582. https://doi.org/10.1007/BF03321664

Layman, J. W. (2001). The Hankel transform and some of its properties. Journal of Integer Sequences, 4(1), Article 01.1.5.

Maleki, Z., Shams, S., Ebadian, A., & Ebrahim, A. A. (2020). On some problems of strongly Ozaki close-to-convex functions. Journal of Function Spaces. https://doi.org/10.1155/2020/6095398

Merkes, E. P., & Wright, D. J. (1971). On the univalence of a certain integral. Proceedings of the American Mathematical Society, 27, 97–100. https://doi.org/10.2307/2037268

Mocanu, P. T. (1986). On strongly-starlike and strongly-convex functions. Studia Universitatis Babeș-Bolyai Mathematica, 31(4), 16–21.

Noonan, J. W., & Thomas, D. K. (1976). On the second Hankel determinant of areally mean p-valent functions. Transactions of the American Mathematical Society, 223, 337–346. https://doi.org/10.2307/1997533

Noor, K. I. (1992). On subclasses of close-to-convex functions of higher order. International Journal of Mathematics and Mathematical Sciences, 15(2), 279–289. https://doi.org/10.1155/S016117129200036X

Noor, K. I. (1983). Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roumaine Math. Pures Appl., 28 (8), 731-739.

Nunokawa, M. (1968). On the univalency and multivalency of certain analysis functions. Mathematische Zeitschrift, 104, 394–404. https://doi.org/10.1007/BF01110431

Nunokawa, M. (1969). On the univalence of a certain integral. Trans. Amer. Math. Soc., 146, 439-446. https://doi.org/10.2307/1995183

Pfaltzgraff, J. A. (1975). Univalence of the integral of {$f^{prime} (z)^{lambda}$}. Bulletin of the London Mathematical Society, 7(3), 254–256. https://doi.org/10.1112/blms/7.3.254

Ponnusamy, S., Sahoo, S. K., & Sugawa, T. (2019). Hornich operations on functions of bounded boundary rotations and order α. Computational Methods and Function Theory, 19(2), 455–472. https://doi.org/10.1007/s40315-019-00276-x

Ponnusamy, S., Sahoo, S. K., & Yanagihara, H. (2014). Radius of convexity of partial sums of functions in the close-to-convex family. Nonlinear Anal., 95, 219-228. https://doi.org/10.1016/j.na.2013.09.009

Robertson, M. S. (1936). On the theory of univalent functions. Annals of Mathematics, 374–408.

Royster, W. C. (1965). On the univalence of a certain integral. Michigan Mathematical Journal, 12, 385–387. http://projecteuclid.org/euclid.mmj/1028999421

Sim, Y. J., Thomas, D. K., & Zaprawa, P. (2022). The second Hankel determinant for starlike and convex functions of order alpha. Complex Variables and Elliptic Equations, 67(10), 2423–2443. https://doi.org/10.1080/17476933.2021.1931149

Singh, V., & Chichra, P. N. (1977). An extension of Becker's criterion of univalence. J. Indian Math. Soc. (N.S.), 41 (3-4), 353-361.

Sugawa, T. (2007). The universal Teichmuller space and related topics. In Quasiconformal mappings and their applications (pp. 261-289). Narosa, New Delhi.

Thomas, D. K., Tuneski, N., & Vasudevarao, A. (2018). Univalent functions: A primer (Vol. 69). Walter de Gruyter GmbH & Co KG.

Tuneski, N. (2001). On some simple sufficient conditions for univalence. Mathematica Bohemica, 126(1), 229–236.

Vamshee Krishna, D., & Ramreddy, T. (2012). Hankel determinant for starlike and convex functions of order alpha. Tbilisi Mathematical Journal, 5, 65–76. https://doi.org/10.32513/tbilisi/1528768890

Published
2024-12-13
How to Cite
Wu, X. (2024). On Geometry of Some Subspaces in Hornich Space. Earthline Journal of Mathematical Sciences, 15(2), 105-116. https://doi.org/10.34198/ejms.15225.105116
Section
Articles