Chemical Reaction and Cross Diffusion Effects on Heat and Mass Transfer Characteristics of Viscoelastic Oil-Based Nanofluid Over a Porous Nonlinear Stretching Surface

  • Christian John Etwire Department of Mathematics, School of Mathematical Sciences, C. K. Tedam University of Technology and Applied Sciences, P.O. Box 24, Navrongo, Ghana
  • Ibrahim Yakubu Seini Department of Mechanical & Industrial Engineering, School of Engineering, University for Development Studies, Nyankpala Campus, P.O. Box 1882, Tamale, Ghana
  • Rabiu Musah Department of Physics, School of Engineering, University for Development Studies, Nyankpala Campus, P.O. Box 1882, Tamale, Ghana
  • Oluwole Daniel Makinde Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa
Keywords: Dufour effect, Soret effect, viscoelastic flow, nonlinear stretching, diffusion

Abstract

The impact of chemical reaction and cross diffusion on heat and mass transport characteristics of viscoelastic flow of Al2O3 and CuO oil-based nanofluids past a porous nonlinear stretching surface has been examined. Similarity transformation was used to transform the governing partial differential equations into coupled nonlinear ordinary differential equations and solved numerically by employing the fourth order Runge-Kutta algorithm with a shooting method. Results for the entrenched parameters controlling the flow dynamics have been tabulated and illustrated graphically. The results found CuO-oil based nanofluid to exhibit higher mass transfer rate and lower heat transfer rate and skin friction coefficient than Al2O3-oil based nanofluid under the same viscoelastic condition. This indicates that CuO-oil based nanofluid can be used as the working fluid in mechanical dampers.

References

Awad, F. G., Sibanda, P., & Khidir, A. (2013). Thermo-diffusion effects on magneto-nanofluid flow over a stretching sheet. Boundary Value Problems, 136(1), 1-13. https://doi.org/10.1186/1687-2770-2013-136

Hayat, T., Rafiq, M., & Ahmad, B. (2016). Soret and Dufour effects on MHD peristaltic flow of Jeffrey fluid in a rotating system with porous medium. PLoS ONE, 11(1), e0145525. https://doi.org/10.1371/journal.pone.0145525

Kasmani, R. Md., Sivasankaran, S., Bhuvaneswari, M., & Hussein, A. K. (2017). Analytical and numerical study on convection of nanofluid past a moving wedge with Soret and Dufour effects. International Journal of Numerical Methods for Heat and Fluid Flow, 27(10), 2333-2354. https://doi.org/10.1108/HFF-07-2016-0277

Salleh, N. H. M., Amirsom, N. A., Abdul-Latiff, N. A., Basir, M. F. M., & Ismail, A. I. Md. (2018). Dufour and Soret effects on magnetohydrodynamic boundary layer slip flow in nanofluids with microorganisms over a heated stretching sheet with temperature-dependent viscosity. Menemui Matematik (Discovering Mathematics), 40(2), 46-63.

Rao, T. R., Kumar, S. S., & Gangadhar, K. (2018). Soret and Dufour effects on magneto-nanofluid flow over a stretching sheet in the presence of thermal radiation and heat generation/absorption. International Journal of Mathematics Trends and Technology, 55(7), 482-497. https://doi.org/10.14445/22315373/IJMTT-V55P563

Najib, N., Bachok, N., Arifin, N. Md., & Ali, F. Md. (2018). Stability analysis of stagnation-point flow in a nanofluid over a stretching/shrinking sheet with second-order slip, Soret and Dufour effects: A revised model. Applied Sciences, 8(4), 642. https://doi.org/10.3390/app8040642

Kumar, B. R., Kumar, M. S., Sandeep, N., & Sivaraj, R. (2018). Cross-diffusion effects on heat and mass transfer micropolar fluid flow past a stretching surface. Defect and Diffusion Forum, 388, 265-280. https://doi.org/10.4028/www.scientific.net/DDF.388.265

Sharma, R., Hussain, S. M., & Mishra, G. (2018). Soret and Dufour effects on viscoelastic radiative and heat-absorbing nanofluid driven by a stretched sheet with inclined magnetic field. Defect and Diffusion Forum, 388, 223-245. https://doi.org/10.4028/www.scientific.net/DDF.388.223

Kandasamy, R., Dharmalingam, R., & Prabhu, K. K. S. (2018). Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate. Alexandria Engineering Journal, 57, 121-130. https://doi.org/10.1016/j.aej.2016.02.029

Lakshmi, K. B., Kumar, K. A., Reddy, J. V. R., & Sugunamma, V. (2019). Influence of nonlinear radiation and cross-diffusion on MHD flow of Casson and Walters-B nanofluids past a variable thickness sheet. Journal of Nanofluids, 8, 1-11. https://doi.org/10.1166/jon.2019.1564

Bhuvaneswari, M., Eswaramoorthi, S., Sivasankaran, S., & Hussein, A. K. (2019). Cross-diffusion effects on MHD mixed convection over a stretching surface in a porous medium with chemical reaction and convective condition. Engineering Transactions, 67(1), 3-19.

Aghbari, A., Agha, H. A., Sadaoui, D., & Mouloud, S. (2019). Soret and Dufour effects on non-Darcy natural convection flow of Buongiorno nanofluid over a vertical plate in a porous medium in the presence of viscous dissipation. Defect and Diffusion Forum, 392, 60-72. https://doi.org/10.4028/www.scientific.net/DDF.392.60

Idowu, A. S., & Falodun, B. O. (2019). Soret–Dufour effects on MHD heat and mass transfer of Walter’s-B viscoelastic fluid over a semi-infinite vertical plate: Spectral relaxation analysis. Journal of Taibah University for Science, 13(1), 49-62. https://doi.org/10.1080/16583655.2018.1523527

Bhaskar, K., Sharma, K., Gupta, S., & Mehta, R. (2020). MHD fluid flow with cross-diffusion effects through a channel using optimal homotopy analysis method. Science & Technology Asia, 25(1), 19-30.

Baako, M., Etwire, C. J., Aloliga, G., & Seini, Y. I. (2023). Dual stratification effects on mixed convective electro-magnetohydrodynamic flow over a stretching plate with multiple slips and cross diffusion. Earthline Journal of Mathematical Sciences, 14(1), 75-103. https://doi.org/10.34198/ejms.14124.075103

Kumar, R. M., Raju, R. S., Mebarek-Oudina, F., Kumar, M. A., & Narla, V. K. (2024). Cross-diffusion effects on an MHD Williamson nanofluid flow past a nonlinear stretching sheet immersed in a permeable medium. Frontiers in Heat and Mass Transfer, 22(1), 15-34. https://doi.org/10.32604/fhmt.2024.048045

Chitra, M., Jeevitha, S., & Rushi Kumar, B. (2023). Effects of cross diffusion on radiative MHD flow over a rotating cone through porous medium. Numerical Heat Transfer, Part B: Fundamentals, 1-19. https://doi.org/10.1080/10407790.2023.2292750

Sahoo, A. C., & Biswal, T. (2015). MHD visco-elastic boundary layer flow past a stretching plate with heat transfer. International Journal of Engineering Technology, Management and Applied Sciences, 3(9), 11-18.

Shit, G. C., Haldar, R., & Ghosh, S. K. (2016). Convective heat transfer and MHD viscoelastic nanofluid flow induced by a stretching sheet. International Journal of Applied and Computational Mathematics, 2, 593-608. https://doi.org/10.1007/s40819-015-0080-4

Etwire, C. J., Seini, I. Y., Rabiu, M., & Makinde, O. D. (2018). Effects of viscoelastic oil-based nanofluids on a porous nonlinear stretching surface with variable heat source/sink. Defect and Diffusion Forum – Computational Analysis of Heat Transfer in Fluids and Solids, 387, 260-272. https://doi.org/10.4028/www.scientific.net/DDF.387.260

Narayana, P. V. S., Tarakaramu, N., Makinde, O. D., Venkateswarlu, B., & Sarojamma, G. (2018). MHD stagnation point flow of viscoelastic nanofluid past a convectively heated stretching surface. Defect and Diffusion Forum, 387, 106-120. https://doi.org/10.4028/www.scientific.net/DDF.387.106

Mahat, R., Rawi, N. A., Kasim, A. R., & Shafie, S. (2018). Mixed convection flow of viscoelastic nanofluid past a horizontal circular cylinder with viscous dissipation. Sains Malaysiana, 47(7), 1617-1623. https://doi.org/10.17576/jsm-2018-4707-33

Hussain, A., Sarwar, L., Akbar, S., Malik, M. Y., & Ghafoor, S. (2019). Model for MHD viscoelastic nanofluid flow with prominence effects of radiation. Heat Transfer – Asian Research, 48, 463-482. https://doi.org/10.1002/htj.21344

Chaich, Z., Saouli, S., & Rezayguia, I. (2019). Thermodynamic analysis of viscoelastic fluid in a porous medium with prescribed wall heat flux over a stretching sheet subjected to a transitive magnetic field. Thermal Science, 23(1), 219-231. https://doi.org/10.2298/TSCI160919028C

Aloliga, G., Seini, I. Y., & Musah, R. (2022). On MHD flow of non-Newtonian viscoelastic fluid over a stretched magnetized surface. American Journal of Applied Mathematics, 10(2), 29-42. https://doi.org/10.11648/j.ajam.20221002.12

Nan, L., Xiaoping, W., Huanying, X., & Haitao, Q. (2024). Numerical study on radiative MHD flow of viscoelastic fluids with distributed-order and variable-order space fractional operators. Mathematics and Computers in Simulation, 215, 291-305. https://doi.org/10.1016/j.matcom.2023.07.021

Maxwell, J. C. (1973). A treatise on electricity and magnetism. UK: Clarendon.

Wang, C. Y. (1989). Free convection on a vertical stretching surface, Journal of Applied Mathematics and Mechanics/Zeitschriftfur AngewandteMathematik und Mechanik, 69(11), 418-420. https://doi.org/10.1002/zamm.19890691115

Cortell, R. (2007). Viscous flow and heat transfer over a nonlinear stretching sheet. Applied Mathematics and Computation, 184, 864-873. https://doi.org/10.1016/j.amc.2006.06.077

Published
2024-11-27
How to Cite
Etwire, C. J., Seini, I. Y., Musah, R., & Makinde, O. D. (2024). Chemical Reaction and Cross Diffusion Effects on Heat and Mass Transfer Characteristics of Viscoelastic Oil-Based Nanofluid Over a Porous Nonlinear Stretching Surface. Earthline Journal of Mathematical Sciences, 15(1), 35-58. https://doi.org/10.34198/ejms.15125.035058
Section
Articles