Applications of (M,N)-Lucas Polynomials for a Certain Family of Bi-Univalent Functions Associating λ-Pseudo-Starlike Functions with Sakaguchi Type Functions

  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Al-Qadisiyah, Iraq
  • Elham Kareem Wanas College of Engineering, University of Al-Qadisiyah, Al Diwaniyah, Al-Qadisiyah, Iraq
  • Adriana Cătaş Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, Romania
  • Mohamed Abdalla Mathematics Department, College of Science, King Khalid University, Abha, Saudi Arabia
Keywords: bi-univalent function, λ-pseudo-starlike function, Sakaguchi type function, (M,N)-Lucas polynomials, coefficient bounds, Fekete-Szegö problem

Abstract

In this article, we use the (M,N)-Lucas Polynomials to determinate upper bounds for the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left| a_{3}\right|$ for functions belongs to a certain family of holomorphic and bi-univalent functions associating $\lambda$-pseudo-starlike functions with Sakaguchi type functions defined in the open unit disk $\mathbb{D}$. Also, we discuss Fekete-Szeg\"{o} problem for functions belongs to this family.

References

Altinkaya, S., & Yalçin, S. (2015). Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points. Journal of Function Spaces, 2015, Article ID 145242, 1-5. https://doi.org/10.1155/2015/145242

Al-Shbeil, I., Wanas, A. K., Saliu, A., & Cătaş, A. (2022). Applications of beta negative binomial distribution and Laguerre polynomials on Ozaki bi-close-to-convex functions. Axioms, 11(451), 1-7. https://doi.org/10.3390/axioms11100451

Al-Shbeil, I., Wanas, A. K., AlAqad, H., Cătaş, A., & Alohali, H. (2024). Applications of Horadam polynomials for Bazilevič and λ-pseudo-starlike bi-univalent functions associated with Sakaguchi type functions. Symmetry, 16(218), 1-11. https://doi.org/10.3390/sym16020218

Babalola, K. O. (2013). On λ-pseudo-starlike functions. Journal of Classical Analysis, 3(2), 137-147. https://doi.org/10.7153/jca-03-12

Caglar, M., Deniz, E., & Srivastava, H. M. (2017). Second Hankel determinant for certain subclasses of bi-univalent functions. Turkish Journal of Mathematics, 41, 694-706. https://doi.org/10.3906/mat-1602-25

Caglar, M., Orhan, H., & Yagmur, N. (2013). Coefficient bounds for new subclasses of bi-univalent functions. Filomat, 27, 1165-1171. https://doi.org/10.2298/FIL1307165C

Duren, P. L. (1983). Univalent Functions. Springer-Verlag.

Filipponi, P., & Horadam, A. F. (1991). Derivative sequences of Fibonacci and Lucas polynomials. Applications of Fibonacci Numbers, 4, 99-108. https://doi.org/10.1007/978-94-011-3586-3_12

Frasin, B. A. (2010). Coefficient inequalities for certain classes of Sakaguchi type functions. International Journal of Nonlinear Sciences, 10, 206-211.

Hidan, M., Wanas, A. K., Khudher, F. C., Murugusundaramoorthy, G., & Abdalla, M. (2024). Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 9(4), 8134-8147. https://doi.org/10.3934/math.2024394

Lee, G. Y., & Aşci, M. (2012). Some properties of the (p,q)-Fibonacci and (p,q)-Lucas polynomials. Journal of Applied Mathematics, 2012, Article ID 752854, 1-18. https://doi.org/10.1155/2012/264842

Lupas, A. (1999). A guide of Fibonacci and Lucas polynomials. Octagon Mathematical Magazine, 7, 2-12.

Orhan, H., Magesh, N., & Balaji, V. K. (2015). Initial coefficient bounds for a general class of bi-univalent functions. Filomat, 29, 1259-1267. https://doi.org/10.2298/FIL1506259O

Owa, S., Sekine, T., & Yamakawa, R. (2007). On Sakaguchi type functions. Applied Mathematics and Computation, 187, 356-361. https://doi.org/10.1016/j.amc.2006.08.133

Sakaguchi, K. (1959). On a certain univalent mapping. Journal of the Mathematical Society of Japan, 11(1), 72-75. https://doi.org/10.2969/jmsj/01110072

Srivastava, H. M., & Bansal, D. (2015). Coefficient estimates for a subclass of analytic and bi-univalent functions. Journal of the Egyptian Mathematical Society, 23, 242-246. https://doi.org/10.1016/j.joems.2014.04.002

Srivastava, H. M., Bulut, S., Caglar, M., & Yagmur, N. (2013). Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat, 27(5), 831-842. https://doi.org/10.2298/FIL1305831S

Srivastava, H. M., Eker, S. S., & Ali, R. M. (2015). Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat, 29, 1839-1845. https://doi.org/10.2298/FIL1508839S

Srivastava, H. M., Eker, S. S., Hamidi, S. G., & Jahangiri, J. M. (2018). Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bulletin of the Iranian Mathematical Society, 44(1), 149-157. https://doi.org/10.1007/s41980-018-0011-3

Srivastava, H. M., Gaboury, S., & Ghanim, F. (2017). Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afrika Matematika, 28, 693-706. https://doi.org/10.1007/s13370-016-0478-0

Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009

Srivastava, H. M., & Wanas, A. K. (2019). Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Mathematical Journal, 59(3), 493-503. https://doi.org/10.5666/KMJ.2019.59.3.493

Srivastava, H. M., Wanas, A. K., & Srivastava, R. (2021). Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry, 13, Article ID 1230, 1-14. https://doi.org/10.3390/sym13071230

Swamy, S. R., Wanas, A. K., & Sailaja, Y. (2020). Some special families of holomorphic and Sălăgean type bi-univalent functions associated with (m,n)-Lucas polynomials. Communications in Mathematics and Applications, 11(4), 563-574.

Wanas, A. K. (2020). Applications of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions. Filomat, 34, 3361-3368. https://doi.org/10.2298/FIL2010361W

Wanas, A. K. (2020). Coefficient estimates for Bazilevič functions of bi-prestarlike functions. Miskolc Mathematical Notes, 21(2), 1031-1040. https://doi.org/10.18514/MMN.2020.3174

Wanas, A. K., & Majeed, A. H. (2019). Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points. Applied Mathematics E-Notes, 19, 14-21.

Wanas, A. K., & Cotîrlă, L.-I. (2021). Initial coefficient estimates and Fekete-Szegő inequalities for new families of bi-univalent functions governed by (p-q)-Wanas operator. Symmetry, 13, Article ID 2118, 1-17. https://doi.org/10.3390/sym13112118

Wanas, A. K., & Cotîrlă, L.-I. (2022). Applications of (M-N)-Lucas polynomials on a certain family of bi-univalent functions. Mathematics, 10, Article ID 595, 1-11. https://doi.org/10.3390/math10040595

Wanas, A. K., Sălăgean, G. S., & Orsolya, P.-S. A. (2023). Coefficient bounds and Fekete-Szegő inequality for a certain family of holomorphic and bi-univalent functions defined by (M,N)-Lucas polynomials. Filomat, 37(4), 1037-1044. https://doi.org/10.2298/FIL2304037W

Wang, T., & Zhang, W. (2012). Some identities involving Fibonacci, Lucas polynomials and their applications. Bulletin of the Mathematical Society of Sciences and Mathematics of Roumania, 55, 95-103.

Published
2024-10-26
How to Cite
Wanas, A. K., Wanas, E. K., Cătaş , A., & Abdalla, M. (2024). Applications of (M,N)-Lucas Polynomials for a Certain Family of Bi-Univalent Functions Associating λ-Pseudo-Starlike Functions with Sakaguchi Type Functions. Earthline Journal of Mathematical Sciences, 15(1), 1-10. https://doi.org/10.34198/ejms.15125.001010
Section
Articles

Most read articles by the same author(s)