A New Symmetric p-stable Obrechkoff Method with Optimal Phase lag for Oscillatory Problems
Abstract
In this paper, we derive a class of symmetric p-stable Obrechkoff methods via Padé approximation approach (PAA) for the numerical solution of special second order initial value problems (IVPs) in ordinary differential equations (ODEs). We investigate periodicity analysis on the proposed scheme to verify p-stability property. The new algorithms possess minimum phase-lag error which shows that they can accurately solve oscillatory problems. Reports on several numerical experiments are provided to illustrate the accuracy of the method.
This work is licensed under a Creative Commons Attribution 4.0 International License.