Fixed Point Theorems in Extended Convex Quasi s-metric Spaces

  • Qusuay H. Alqifiary Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Diwaniya, Iraq
Keywords: quasi s-metric space, fixed point, convex structure, extended convex quasi s-metric spaces

Abstract

In this work, through the convex structure, we introduce the concept of the extended convex quasi s-metric spaces. In addition, through Mann's iterative technique, we theorize the existence of a unique fixed point for two types of contraction mapping in extended convex quasi s-metric spaces.

References

Aydi, H., Bilgili, N., & Karapinar, E. (2015). Common fixed point results from quasi-metric spaces to G-metric spaces. J. Egypt. Math. Soc., 23, 356-361. https://doi.org/10.1016/j.joems.2014.06.009

Chen, L., Gao, L., & Chen, D. (2017). Fixed point theorems of mean nonexpansive set-valued mappings in Banach spaces. J. Fixed Point Theory Appl., 19, 2129-2143. https://doi.org/10.1007/s11784-017-0401-9

Chen, L., Gao, L., & Zhao, Y. (2017). A new iterative scheme for finding attractive points of (α, β)-generalized hybrid set-valued mappings. J. Nonlinear Sci. Appl., 10, 1228-1237. https://doi.org/10.22436/jnsa.010.03.31

Chen, L., Zou, J., Zhao, Y., & Zhang, M. (2019). Iterative approximation of common attractive points of (a, β)-generalized hybrid set-valued mappings. J. Fixed Point Theory Appl., 21, 58. https://doi.org/10.1007/s11784-019-0692-0

Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), 5-11.

Ding, X.P. (1988). Iteration processes for nonlinear mappings in convex metric spaces. J. Math. Anal. Appl., 132, 114-122. https://doi.org/10.1016/0022-247X(88)90047-9

Chen, L., Li, C., Kaczmarek, R., & Zhao, Y. (2020). Several fixed point theorems in convex b-metric spaces and applications. Mathematics, 8(2), 242. https://doi.org/10.3390/math8020242

Felhi, A., Sahmim, S., & Aydi, H. (2016). Ulam-Hyers stability and well-posedness of fixed point problems for aα - λ-contractions on quasi b-metric spaces. Fixed Point Theory Appl., 2016(1), 20 pp. https://doi.org/10.1186/s13663-015-0491-2

Goebel, K., & Kirk, W.A. (1983). Iteration processes for nonexpansive mappings. Contemp. Math., 21, 115-123. https://doi.org/10.1090/conm/021/729507

Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), 5-11.

Ding, X.P. (1988). Iteration processes for nonlinear mappings in convex metric spaces. J. Math. Anal. Appl., 132, 114-122. https://doi.org/10.1016/0022-247X(88)90047-9

Chen, L., Li, C., Kaczmarek, R., & Zhao, Y. (2020). Several fixed point theorems in convex b-metric spaces and applications. Mathematics, 8(2), 242. https://doi.org/10.3390/math8020242

Felhi, A., Sahmim, S., & Aydi, H. (2016). Ulam-Hyers stability and well-posedness of fixed point problems for aα - λ-contractions on quasi b-metric spaces. Fixed Point Theory Appl., 2016(1), 20 pp. https://doi.org/10.1186/s13663-015-0491-2

Goebel, K., & Kirk, W.A. (1983). Iteration processes for nonexpansive mappings. Contemp. Math., 21, 115-123. https://doi.org/10.1090/conm/021/729507

Mihet, D. (2004). A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst., 144, 431-439. https://doi.org/10.1016/S0165-0114(03)00305-1

Ran, A.C.M., & Reurings, M.C.B. (2004). A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc., 132, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4

Reich, S., & Shafrir, I. (1990). Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal., 19, 537-558. https://doi.org/10.1016/0362-546X(90)90058-0

Ruzhansky, M., Cho, Y.J., Agarwal, P., & Area, I. (2017). Advances in real and complex analysis with applications. Springer. https://doi.org/10.1007/978-981-10-4337-6

Takahashi, W. (1970). A convexity in metric space and nonexpansive mappings. I. Kodai Math. Semin. Rep., 22, 142-149. https://doi.org/10.2996/kmj/1138846111

Wang, H.Q., Song, X.H., Chen, L.L., & Xie, W. (2019). A secret sharing scheme for quantum gray and color images based on encryption. Int. J. Theor. Phys., 58, 1626-1650. https://doi.org/10.1007/s10773-019-04057-z

Published
2024-04-08
How to Cite
Alqifiary, Q. H. (2024). Fixed Point Theorems in Extended Convex Quasi s-metric Spaces. Earthline Journal of Mathematical Sciences, 14(4), 605-615. https://doi.org/10.34198/ejms.14424.605615
Section
Articles