$K^{th}$-order Differential Subordination Results of Analytic Functions in the Complex Plane

  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah 58001, Al-Qadisiyah, Iraq
  • Madan Mohan Soren Department of Mathematics, Berhampur University, Bhanja Bihar 760007, Ganjam, Odisha, India
Keywords: analytic function, admissible function, $K^{th}$-order differential subordination, best dominant


In recent years, there have been many interesting usages for differential subordinations of analytic functions in Geometric Function Theory of Complex Analysis. The concept of the first and second-order differential subordination have been pioneered by Miller and Mocanu. In 2011, the third-order differential subordination were defined to give a new generalization to the concept of differential subordination. While the fourth-order differential subordination has been introduced in 2020. In the present article, we introduce new concept that is the Kth-order differential subordination of analytic functions in the open unit disk U.


Antonino, J. A., & Miller, S. S. (2011). Third-order differential inequalities and subordinations in the complex plane. Complex Variables and Elliptic Equations, 56, 439-454. https://doi.org/10.1080/17476931003728404

Atshan, W. G., Battor, A. H., & Abaas, A. F. (2020). New and extended results on fourth-order differential subordination for univalent analytic functions. Al-Qadisiyah Journal of Pure Science, 2, 1-13. https://doi.org/10.29350/qjps.2020.25.2.1066

Attiya, A. A., Kwon, O. S., Hyang, P. J., & Cho, N. E. (2016). An integrodifferential operator for meromorphic functions associated with the Hurwitz-Lerch Zeta function. Filomat, 30(7), 2045-2057. https://doi.org/10.2298/FIL1607045A

Attiya, A. A., Seoudy, T. M., & Albaid, A. (2023). Third-order differential subordination for meromorphic functions associated with generalized Mittag-Leffler function. Fractal and Fractional, 7, Art. ID 175, 1-12. https://doi.org/10.3390/fractalfract7020175

Bulboacă, T. (2002). Classes of first order differential superordinations. Demonstratio Mathematica, 35(2), 287-292. https://doi.org/10.1515/dema-2002-0209

Cotîrlă, L.-I., & Juma, A. R. S. (2023). Properties of differential subordination and superordination for multivalent functions associated with convolution operators. Axioms, 12(2), Art. ID 169, 1-11. https://doi.org/10.3390/axioms12020169

Ibrahim, R. W., Ahmad, M. Z., & Al-Janaby, H. F. (2015). Third-order differential subordination and superordination involving a fractional operator. Open Mathematics, 13, 706-728. https://doi.org/10.1515/math-2015-0068

Juma, A. R. S., Mushtaq, A. H. S., & Mohammed, Al. H. F. (2015). Third-order differential subordination and superordination results for meromorphically univalent functions involving linear operator. European Journal of Scientific Research (EJSR), 132(1), 57-65.

Lupas, A. A., & Catas, A. (2023). Differential subordination and superordination results for q-analogue of multiplier transformation. Fractal and Fractional, 7(2), Art. ID 199, 1-16. https://doi.org/10.3390/fractalfract7020199

Miller, S. S., & Mocanu, P. T. (2000). Differential subordinations: theory and applications. Marcel Dekker.

Ponnusamy, S., & Juneja, O. P. (1992). Third-order differential inequalities in the complex plane. In Current Topics in Analytic Function Theory. World Scientific. https://doi.org/10.1142/9789814355896_0023

Rahrovi, S. (2015). Subordination and superordination properties for convolution operator. International Journal of Nonlinear Analysis and Applications, 6(2), 137-147. https://doi.org/10.17265/2159-5291/2016.10.002

Shehab, N. H., & Juma, A. R. S. (2022). Third order differential subordination for analytic functions involving convolution operator. Baghdad Science Journal, 19, 581-592. https://doi.org/10.21123/bsj.2022.19.3.0581

Srivastava, H. M., Yang, D.-G., & Xu, N.-E. (2009). Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator. Integral Transforms and Special Functions, 20, 581-606. https://doi.org/10.1080/10652460902723655

Taha, A. K. Y., & Juma, A. R. S. (2023). Third order differential superordination and subordination results for multivalent meromorphically functions associated with Wright function. AIP Conference Proceedings, 2414, 040021. https://doi.org/10.1063/5.0134582

Tang, H., & Deniz, E. (2014). Third-order differential subordination results for analytic functions involving the generalized Bessel functions. Acta Mathematica Scientia, 34B(6), 1707-1719. https://doi.org/10.1016/S0252-9602(14)60116-8

Tang, H., Srivastava, H. M., Deniz, E., & Li, S.-H. (2015). Third-Order differential superordination involving the generalized Bessel functions. Bulletin of the Malaysian Mathematical Sciences Society, 38, 1669-1688. https://doi.org/10.1007/s40840-014-0108-7

Wanas, A. K. (2019). New differential operator for holomorphic functions. Earthline Journal of Mathematical Sciences, 2(2), 527-537. https://doi.org/10.34198/ejms.2219.527537

Wanas, A. K., & Lupas, A. A. (2021). Sandwich theorems for multivalent analytic functions associated with differential operator. Kragujevac Journal of Mathematics, 45(1), 7-20. https://doi.org/10.46793/KgJMat2101.007W

Wanas, A. K., & Srivastava, H. M. (2020). Differential sandwich theorems for Bazilevič function defined by convolution structure. Turkish Journal of Inequalities, 4(2), 10-21.

Xu, Q.-H., Xiao, H.-G., & Srivastava, H. M. (2014). Some applications of differential subordination and the Dziok-Srivastava convolution operator. Applied Mathematics and Computation, 230, 496-508. https://doi.org/10.1016/j.amc.2013.12.065

How to Cite
Wanas, A. K., & Soren, M. M. (2024). $K^{th}$-order Differential Subordination Results of Analytic Functions in the Complex Plane. Earthline Journal of Mathematical Sciences, 14(4), 595-603. https://doi.org/10.34198/ejms.14424.595603