Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions linked with Horadam Polynomials

  • Sondekola Rudra Swamy Department of Information Science and Engineering, Acharya Institute of Technology, Bengaluru - 560 107, Karnataka, India
  • Yogesh Nanjadeva Department of Information Science and Engineering, Acharya Institute of Technology, Bengaluru - 560 107, Karnataka, India
  • Pankaj Kumar Department of Information Science and Engineering, Acharya Institute of Technology, Bengaluru - 560 107, Karnataka, India
  • Tarikere Manjunath Sushma Department of Information Science and Engineering, Acharya Institute of Technology, Bengaluru - 560 107, Karnataka, India
Keywords: Horodam polynomials, bi-univalent functions, subordination, regular functions

Abstract

In this work, we investigate some subclasses of bi-univalent and regular functions associated with Horadam polynomials in the open unit disk $\mathfrak{U}=\{\varsigma\in\mathbb{C}:|\varsigma| <1\}$. For functions that belong to these subclasses, we find bounds on their initial coefficients. The functional problem of Fekete-Szegö is also examined. Along with presenting some new results, we also talk about pertinent connections to earlier findings.

Downloads

Download data is not yet available.

References

Abirami, C., Magesh, N., Yamini, J., & Gatti, N. B. (2020). Horadam polynomial coefficient estimates for the classes of A-bi-starlike and bi-Bazilevic function. Journal of Analysis, 28(4), 951-960. https://doi.org/10.1007/541478-020-00224-2

Amourah, A., Frasin, B. A., Swamy, S. R., & Sailaja, Y. (2022). Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activation function and k-Fibonacci numbers. Journal of Mathematical Computer Science, 27, 105-117. https://doi.org/10.22436/jmcs.027.02.02

Brannan, D. A., & Clunie, J. G. (1979). Aspects of contemporary complex analysis. Proceedings of the NATO Advanced study institute held at University of Durhary. New York: Academic Press.

Brannan, D. A., & Taha, T. S. (1986). On some classes of bi-univalent functions. Studia Universitatis Babes-Bolyai Mathematica, 31 (2), 70-77.

Deniz, E. (2013). Certain subclasses of bi-univalent functions satisfying subordinate conditions. Journal of Classical Analysis, 2(1), 49-60. https://doi.org/10.7153/jca-02-05

Duren, P. L. (1983). Univalent functions. Grundlehren der Mathematischen Wissenschaften, Band 259. Springer-Verlag.

El-Deeb, S. M., Bulboacă, T., & El-Matary, B. M. (2020). Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative. Mathematics, 8, 418. https://doi.org/10.3390/math8030418

Fekete, M., & Szegő, G. (1933). Eine Bemerkung Über Ungerade Schlichte Funktionen. Journal of the London Mathematical Society, 89, 85-89. https://doi.org/10.1112/jlms/s1-8.2.85

Frasin, B. A. (2014). Coefficient bounds for certain classes of bi-univalent functions. Hacet. Journal of Mathematics and Statistics, 43(3), 383-389.

Frasin, B. A., & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics, 24, 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048

Frasin, B. A., Swamy, S. R., & Aldawish, A. (2021). A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers. Journal of Function Spaces, 2021, Article ID 4249509, 8 pages. https://doi.org/10.1155/2021/4249509

Hörçum, T., & Koçer, E. G. (2009). On some properties of Horadam polynomials. International Mathematical Forum, 4, 1243-1252.

Horadam, A. F., & Mahon, J. M. (1985). Pell and Pell-Lucas polynomials. Fibonacci Quarterly, 23, 7-20.

Khan, B., Srivastava, H. M., Tahir, M., Darus, M., Ahmed, Q. Z., & Khan, N. (2020). Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 6(1), 1024-1039.

Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1

Magesh, N., Yamini, J., & Abhirami, C. (2018). Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials. arXiv: 1812.04464v1 [math.cv].

Orhan, H., Mamatha, P. K., Swamy, S. R., Magesh, N., & Yamini, J. (2021). Certain classes of bi-univalent functions associated with the Horadam polynomials. Acta Universitatis Sapientiae, Mathematica, 13(1), 258-272. https://doi.org/10.2478/ausm-2021-0015

Shammaky, A. E., Frasin, B. A., & Swamy, S. R. (2022). Fekete-Szegö inequality for bi-univalent functions subordinate to Horadam polynomials. Journal of Function Spaces, 2022, Article ID 9422945, 7 pages. https://doi.org/10.1155/2022/9422945

Srivastava, H. M. (2020). Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iranian Journal of Science and Technology, Transaction A, Science, 44, 327-344. https://doi.org/10.1007/s40995-019-00815-0

Srivastava, H. M., Altınkaya, Ş., & Yalçın, S. (2019). Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iranian Journal of Science and Technology, Transaction A, Science, 43, 1873-1879. https://doi.org/10.1007/s40995-018-0647-0

Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009

Srivastava, H. M., Wanas, A. K., & Tan, R. (2021). Applications of the q-Srivastava-Attiya operator involving a family of bi-univalent functions associated with Horadam polynomials. Symmetry, 13(7), 1230. https://doi.org/10.3390/sym13071230

Swamy, S. R. (2021). Coefficient bounds for Al-Oboudi type bi-univalent functions based on a modified sigmoid activation function and Horadam polynomials. Earthline Journal of Mathematics Sciences, 7(2), 251-270. https://doi.org/10.34198/ejms.7221.251270

Swamy, S. R., & Nirmala, J. (2021). Some special families of holomorphic and Al-Oboudi type bi-univalent functions associated with (m, n)-Lucas polynomials involving modified sigmoid activation function. South East Asian Journal of Mathematics and Mathematical Sciences, 17(1), 1-16.

Swamy, S. R., & Sailaja, Y. (2020). Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions. International Journal of Mathematical Trends and Technology, 66(8), 131-138. https://doi.org/10.14445/22315373/IJMTT-V6618P514

Swamy, S. R., & Wanas, A. K. (2022). A comprehensive family of bi-univalent functions defined by (m,n)-Lucas polynomials. Bol. Soc. Mat. Mex., 28(34), 10 pages. https://doi.org/10.1007/s40590-022-00411-0

Swamy, S. R., & Yalçın, S. (2022). Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials. Problems, Analysis and Issues in Analysis, 11 (1), 133-144. https://doi.org/10.15393/j3.art.2022.10351

Tan, D. L. (1984). Coefficient estimates for bi-univalent functions. Chinese Annals of Mathematics, Series A, 5, 559-568.

Tang, H., Deng, G., & Li, S. (2013). Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. Journal of Inequalities and Applications, 2013, Art. 317, 10 pages. https://doi.org/10.1186/1029-242X-2013-317

Wanas, A. K., Swamy, S. R., Tang, H., Shaba, T. G., Nirmala, J., & Ibrahim, I. O. (2021). A comprehensive family of bi-univalent functions linked with Gegenbauer polynomials. Turkish Journal of Inequalities, 5(2), 61-69.

Wanas, A. K., & Lupas, A. A. (2019). Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions. IOP Conference Series: Journal of Physics: Conference Series, 1294, 032003. https://doi.org/10.1088/1742-6596/1294/3/032003

Published
2024-03-15
How to Cite
Swamy, S. R., Nanjadeva, Y., Kumar, P., & Sushma, T. M. (2024). Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions linked with Horadam Polynomials. Earthline Journal of Mathematical Sciences, 14(3), 443-457. https://doi.org/10.34198/ejms.14324.443457
Section
Articles