Persistent Homology and Persistent Cohomology: A Review
Abstract
Persistent homology is an important tool in non-linear data reduction. Its sister theory, persistent cohomology, has attracted less attention in the past years eventhough it has many advantages. Several literatures dealing with theory and computations of persistent homology and cohomology were surveyed. Reasons why cohomology has been neglected over time are identified and, few possible solutions to the identified problems are made available. Furthermore, using Ripserer, the computation of persistent homology and cohomology using 2-sphere both manually and computationally are carried out. In both cases, same result was obtained, particularly in the computation of their barcodes which visibly revealed the point where the two coincides. Conclusively, it is observed that persistent cohomology is not only faster in computation than persistent homology, but also uses less memory in a little time.
References
Dirafzoon, A., & Lobaton, E. (2013). Topological mapping of unknown environments using an unlocalized robotic swarm. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 5545-5551. https://doi.org/10.1109/IROS.2013.6697160
Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., & Ziegelmeier, L. (2017). Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research, 18(8), 1-35.
De Silva, V., & Ghrist, R. (2007). Coverage in sensor networks via persistent homology. Algebraic and Geometric Topology, 7(1), 339-358. https://doi.org/10.2140/agt.2007.7.339
Arsuaga, J., Borrman, T., Cavalcante, R., Gonzalez, G., & Park, C. (2015). Identification of copy number aberrations in breast cancer subtypes using persistence topology. Microarrays, 4, 339-369. https://doi.org/10.3390/microarrays4030339
Asaad, A., & Jassim, S. (2017). Topological data analysis for image tampering detection. In Digital Forensics and Watermarking (pp. 136-146). Lecture Notes in Computer Science, vol. 10431, Springer. https://doi.org/10.1007/978-3-319-64185-0_11
Bendich, P., Edelsbrunner, H., & Kerber, M. (2010). Computing robustness and persistence for images. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1251-1260. https://doi.org/10.1109/TVCG.2010.139
Ghrist, R., & Muhammad, A. (2005). Coverage and hole-detection in sensor networks via homology. In IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 254-260. https://doi.org/10.1109/IPSN.2005.1440933
Goldfarb, D. (2014). An application of topological data analysis to hockey analytics. arXiv preprint: arXiv:1409.7635.
i, M. Z., Ryerson, M. S., & Balakrishnan, H. (2019). Topological data analysis for aviation applications. Transportation Research Part E: Logistics and Transportation Review, 128, 149-174. https://doi.org/10.1016/j.tre.2019.05.017
Bonis, T., Ovsjanikov, M., Oudot, S., & Chazal, F. (2016). Persistence based pooling for shape pose recognition. In Computational Topology in Image Context (pp. 19-29). Lecture Notes in Computer Science, vol. 9667, Springer. https://doi.org/10.1007/978-3-319-39441-1_3
Borradaile, G., Chambers, E. W., Fox, K., & Nayyeriy, A. (2017). Minimum cycle and homology bases of surface embedded graphs. Journal of Computational Geometry, 8(2).
Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. Journal of Machine Learning Research, 16(1), 77-102.
Savic, A., Toth, G., & Duponchel, L. (2017). Topological data analysis (TDA) applied to reveal pedogenetic principles of European topsoil system. Science of the Total Environment, 586, 1091-1100. https://doi.org/10.1016/j.scitotenv.2017.02.095
Camara, P. (2017). Topological methods for genomics: present and future directions. Curr. Opin. Syst. Biol., 1, 95-101. https://doi.org/10.1016/j.coisb.2016.12.007
Cang, Z., Mu, L., & Wei, G. (2018). Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLOS Computational Biology, 14(1), e1005929. https://doi.org/10.1371/journal.pcbi.1005929
Cang, Z., Mu, L., Wu, K., Opron, K., Xia, K., & Wei, G. (2015). A topological approach for protein classification. Computational and Mathematical Biophysics, 3(1). https://doi.org/10.1515/mlbmb-2015-0009
Cang, Z., & Wei, G. (2018). Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction. International Journal for Numerical Methods in Biomedical Engineering, 34(2). https://doi.org/10.1002/cnm.2914
Cang, Z., & Wei, G. (2017). TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Computational Biology, 13(7), e1005690. https://doi.org/10.1371/journal.pcbi.1005690
Nakamura, T., Hiraoka, Y., Hirata, A., Escolar, E. G., & Nishiura, Y. (2015). Persistent homology and many-body atomic structure for medium range order in the glass. Nanotechnology, 26(30), 304001. https://doi.org/10.1088/0957-4484/26/30/304001
Carlsson, G., Zomorodian, A., Collins, A., & Guibas, L. (2004). Persistence barcodes for shapes. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (pp. 124-135). ACM. https://doi.org/10.1145/1057432.1057449
Carriere, M., Oudot, S., & Ovsjanikov, M. (2017). Sliced Wasserstein Kernel for Persistence Diagrams. In ICML 2017 - Thirty-fourth International Conference on Machine Learning (pp. 1-10). Sydney, Australia.
Carriere, M., Oudot, S. Y., & Ovsjanikov, M. (2015). Stable topological signatures for points on 3D shapes. In Proceedings of the Eurographics Symposium on Geometry Processing, SGP'15 (pp. 1-12). Aire-la-Ville, Switzerland: Eurographics Association. https://doi.org/10.1111/cgf.12692
Tran, Q. H., & Hasegawa, Y. (2019). Topological time-series analysis with delay-variant embedding. Phys. Rev. E, 99(3), 032209. https://doi.org/10.1103/PhysRevE.99.032209
Chen, C., & Freedman, D. (2010). Measuring and computing natural generators for homology groups. Computational Geometry, 43(2), 169-181. https://doi.org/10.1016/j.comgeo.2009.06.004
Chen, C., & Freedman, D. (2011). Hardness results for homology localization. Discrete and Computational Geometry, 45(3), 425-448. https://doi.org/10.1007/s00454-010-9322-8
Chung, M., Bubenik, P., & Kim, P. (2009). Persistence diagrams of cortical surface data. In Information processing in medical imaging (pp. 386-397). Springer. https://doi.org/10.1007/978-3-642-02498-6_32
Perea, J. A., & Harer, J. (2015). Sliding windows and persistence: An application of topological methods to signal analysis. Foundations of Computational Mathematics, 15(3), 799-838. https://doi.org/10.1007/s10208-014-9206-z
Kwitt, R., Huber, S., Niethammer, M., Lin, W., & Bauer, U. (2015). Statistical topological data analysis - a kernel perspective. In Advances in Neural Information Processing Systems 28 (pp. 3070-3078). Curran Associates, Inc.
Singh, N., Couture, H. D., Marron, J. S., Perou, C., & Niethammer, M. (2014). Topological descriptors of histology images. In Machine Learning in Medical Imaging (pp. 231-239). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-10581-9_29
Leon, J. L., Cerri, A., Reyes, E. G., & Diaz, R. G. (2013). Gait-based gender classification using persistent homology. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (pp. 366-373). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41827-3_46
Turner, K., Mukherjee, S., & Boyer, D. M. (2014). Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA, 3(4), 310–344. https://doi.org/10.1093/imaiai/iau011
Pike, J. A., Khan, A. O., Pallini, C., Thomas, S. G., Mund, M., Ries, J., Poulter, N. S., & Styles, I. B. (2020). Topological data analysis quantifies biological nano-structure from single molecule localization microscopy. Bioinformatics (Oxford, England), 36(5), 1614-1621. https://doi.org/10.1093/bioinformatics/btz788
Sauerwald, N., Shen, Y., & Kingsford, C. (2019). Topological data analysis reveals principles of chromosome structure through cellular differentiation. bioRxiv 540716. https://doi.org/10.1101/540716
Parida, L., Utro, F., Yorukoglu, D., Carrieri, A. P., Kuhn, D., & Basu, S. (2015). Topological signatures for population admixture. In T. M. Przytycka (Ed.), Research in Computational Molecular Biology (pp. 261-275). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-16706-0_27
Dey, T. K., Hirani, A. N., & Krishnamoorthy, B. (2011). Optimal homologous cycles, total unimodularity, and linear programming. SIAM Journal on Computing, 40(4), 1026-1044. https://doi.org/10.1137/100800245
Schofield, J. P. R., Strazzeri, F., Bigler, J., et al. (2019). A topological data analysis network model of asthma based on blood gene expression profiles. bioRxiv. https://doi.org/10.1101/516328
Wheelock, K., Sun, K., Pandis, I., et al. (2019). A topological data analysis network model of asthma based on blood gene expression profiles. bioRxiv
Nicolau, M., Levine, A. J., & Carlsson, G. (2011). Topology-based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings of the National Academy of Sciences, 108(17), 7265-7270. https://doi.org/10.1073/pnas.1102826108
Dey, T. K., Sun, J., & Wang, Y. (2010). Approximating loops in a shortest homology basis from point data. In Proceedings of the Twenty-sixth Annual Symposium on Computational Geometry (pp. 166-175). ACM.
Pirooznia, M., Yang, J. Y., Yang, M. Q., & Deng, Y. (2008). A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics, 9 (Suppl 1), S13. https://doi.org/10.1186/1471-2164-9-S1-S13
Le, T., & Yamada, M. (2018). Persistence Fisher kernel: A Riemannian manifold kernel for persistence diagrams. In Advances in Neural Information Processing Systems 31 (pp. 10007-10018). Curran Associates, Inc.
Duman, A. N., & Pirim, H. (2018). Gene coexpression network comparison via persistent homology. International Journal of Genomics, 11. https://doi.org/10.1155/2018/7329576
Tarek, S., Abd Elwahab, R., & Shoman, M. (2017). Gene expression-based cancer classification. Egyptian Informatics Journal, 18(3), 151-159. https://doi.org/10.1016/j.eij.2016.12.001
van IJzendoorn, D. G. P., Szuhai, K., Briaire-de Bruijn, I. H., Kostine, M., Kuijjer, M. L., & Bovee, J. V. M. G. (2019). Machine Learning Analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies 101 therapeutic targets for soft tissue sarcomas. PLoS Computational Biology, 15(2), e1006826. https://doi.org/10.1371/journal.pcbi.1006826
Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4741-4748). https://doi.org/10.1109/CVPR.2015.7299106
Obayashi, I. (2017). Volume optimal cycle: Tightest representative cycle of a generator on persistent homology. arXiv preprint arXiv:1712.05103.
Emmett, K., Rosenbloom, D., Camara, P., & Rabadan, R. (2014). Parametric inference using persistence diagrams: A case study in population genetics. arXiv.
Emmett, K., Schweinhart, B., & Rabadan, R. (2016). Multiscale topology of chromatin folding. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (pp. 177-180). https://doi.org/10.4108/eai.3-12-2015.2262453
Erickson, J., & Whittlesey, K. (2005). Greedy optimal homotopy and homology generators. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1038-1046).
Escolar, E. G., & Hiraoka, Y. (2016). Optimal cycles for persistent homology via linear programming. In Optimization in the Real World (pp. 79-96). Springer. https://doi.org/10.1007/978-4-431-55420-2_5
Wu, P., et al. (2017). Optimal topological cycles and their application in cardiac trabeculae restoration. In M. Niethammer et al. (Eds.), Information Processing in Medical Imaging. IPMI 2017 (Lecture Notes in Computer Science, Vol. 10265). Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_7
Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images. April 8, 2009. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
Mandal, S., Guzman-Saenz, A., Haiminen, N., Basu, S., & Parida, L. (2020). A topological data analysis approach on predicting phenotypes from gene expression data. In C. Martin-Vide, M. Vega-Rodriguez, & T. Wheeler (Eds.), Algorithms for Computational Biology. AlCoB 2020 (Lecture Notes in Computer Science, Vol. 12099). Springer, Cham. https://doi.org/10.1007/978-3-030-42266-0_14
Chang, Z., & Wei-Wei, G. (2020). Persistent cohomology for data with multicomponent heterogeneous information. SIAM J Math Data Sci., 2(2), 396-418. https://doi.org/10.1137/19M1272226
De Silva, D., Morozov, D., & Vejdemo-Johansson, M. (2011). Dualities in persistent (co)homology. Inverse Problems, 27(121), 124003. https://doi.org/10.1088/0266-5611/27/12/124003
Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E. G., Matsue, K., & Nishiura, Y. (2016). Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences, 113(26), 7035-7040. https://doi.org/10.1073/pnas.1520877113
Pokorny, F., Kjellstrom, H., Kragic, D., & Ek, C. (2012). Persistent Homology for Learning Densities with Bounded Support. In F. Pereira, C. J. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems (Vol. 25). Curran Associates, Inc.
Hwang, K. B., Cho, D. Y., Park, S. W., Kim, S. D., & Zhang, B. T. (2002). Applying machine learning techniques to analysis of gene expression data: cancer diagnosis. In S.M. Lin & K.F. Johnson (Eds.), Methods of Microarray Data Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0873-1_13
Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P. V., & Subramaniam, S. (1998). Analytical shape computation of macromolecules: II. molecular area and volume through alpha shape. Proteins, 33(1), 18-29. https://doi.org/10.1002/(SICI)1097-0134(19981001)33:1<18::AID-PROT2>3.0.CO;2-H
Kurlin, V. (2015). A fast persistence-based segmentation of noisy 2D clouds with provable guarantees. Pattern Recognition Letters, 83, 3-12. https://doi.org/10.1016/j.patrec.2015.11.025
Kong, Y., & Yu, T. (2018). A deep neural network model using random forest to extract feature representation for gene expression data classification. Scientists Reports, 8(1), 16477. https://doi.org/10.1038/s41598-018-34833-6
Kusano, G., Hiraoka, Y., & Fukumizu, K. (2016). Persistence weighted Gaussian kernel for topological data analysis. In Proceedings of The 33rd International Conference on Machine Learning, 48, 2004-2013. Available from https://proceedings.mlr.press/v48/kusano16.html
Kang, L., Xu, B., & Morozov, D. (2021). Evaluating state space discovery by persistent cohomology in the spatial representation system. Frontiers in Computational Neuroscience, 15. https://doi.org/10.3389/fncom.2021.616748
Adams, H., Tausz, A., & Vejdemo-Johansson, M. (2014). javaPlex: A research software package for persistent (co)homology. In Mathematical Software, ICMS 2014 - 4th International Congress, Proceedings (pp. 129-136). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 8592 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-662-44199-2_23
Schonsheck, N. C., & Schonsheck, S. C. Spherical coordinates from persistent cohomology. arXiv.org/pdf/2209.02791
Zomorodian, A., & Carlsson, G. (2005). Computing Persistent Homology. Discrete Comput. Geom., 33, 249-274. https://doi.org/10.1007/s00454-004-1146-y
Xia, K., & Wei, G. W. (2014). Persistent Homology analysis of protein structure, flexibility, and folding. IJNMBE, 30(8), 814-844. https://doi.org/10.1002/cnm.2655
Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2002). Topological persistence and simplification. Discrete Comput. Geom., 28(4), 511-533. https://doi.org/10.1007/s00454-002-2885-2
Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1150-1157. https://doi.org/10.1109/ICCV.1999.790410
This work is licensed under a Creative Commons Attribution 4.0 International License.