Persistent Homology and Persistent Cohomology: A Review

  • Busayo Adeyege Okediji Department of Pure and Applied Mathematics, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
  • Abiodun Tinuoye Oladipo Department of Pure and Applied Mathematics, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
Keywords: persistent homology, persistent cohomology, Ripser

Abstract

Persistent homology is an important tool in non-linear data reduction. Its sister theory, persistent cohomology, has attracted less attention in the past years eventhough it has many advantages. Several literatures dealing with theory and computations of persistent homology and cohomology were surveyed. Reasons why cohomology has been neglected over time are identified and, few possible solutions to the identified problems are made available. Furthermore, using Ripserer, the computation of persistent homology and cohomology using 2-sphere both manually and computationally are carried out. In both cases, same result was obtained, particularly in the computation of their barcodes which visibly revealed the point where the two coincides. Conclusively, it is observed that persistent cohomology is not only faster in computation than persistent homology, but also uses less memory in a little time.

References

Dirafzoon, A., & Lobaton, E. (2013). Topological mapping of unknown environments using an unlocalized robotic swarm. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 5545-5551. https://doi.org/10.1109/IROS.2013.6697160

Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., & Ziegelmeier, L. (2017). Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research, 18(8), 1-35.

De Silva, V., & Ghrist, R. (2007). Coverage in sensor networks via persistent homology. Algebraic and Geometric Topology, 7(1), 339-358. https://doi.org/10.2140/agt.2007.7.339

Arsuaga, J., Borrman, T., Cavalcante, R., Gonzalez, G., & Park, C. (2015). Identification of copy number aberrations in breast cancer subtypes using persistence topology. Microarrays, 4, 339-369. https://doi.org/10.3390/microarrays4030339

Asaad, A., & Jassim, S. (2017). Topological data analysis for image tampering detection. In Digital Forensics and Watermarking (pp. 136-146). Lecture Notes in Computer Science, vol. 10431, Springer. https://doi.org/10.1007/978-3-319-64185-0_11

Bendich, P., Edelsbrunner, H., & Kerber, M. (2010). Computing robustness and persistence for images. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1251-1260. https://doi.org/10.1109/TVCG.2010.139

Ghrist, R., & Muhammad, A. (2005). Coverage and hole-detection in sensor networks via homology. In IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 254-260. https://doi.org/10.1109/IPSN.2005.1440933

Goldfarb, D. (2014). An application of topological data analysis to hockey analytics. arXiv preprint: arXiv:1409.7635.

Li, M. Z., Ryerson, M. S., & Balakrishnan, H. (2019). Topological data analysis for aviation applications. Transportation Research Part E: Logistics and Transportation Review, 128, 149-174. https://doi.org/10.1016/j.tre.2019.05.017

Bonis, T., Ovsjanikov, M., Oudot, S., & Chazal, F. (2016). Persistence based pooling for shape pose recognition. In Computational Topology in Image Context (pp. 19-29). Lecture Notes in Computer Science, vol. 9667, Springer. https://doi.org/10.1007/978-3-319-39441-1_3

Borradaile, G., Chambers, E. W., Fox, K., & Nayyeriy, A. (2017). Minimum cycle and homology bases of surface embedded graphs. Journal of Computational Geometry, 8(2).

Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. Journal of Machine Learning Research, 16(1), 77-102.

Savic, A., Toth, G., & Duponchel, L. (2017). Topological data analysis (TDA) applied to reveal pedogenetic principles of European topsoil system. Science of the Total Environment, 586, 1091-1100. https://doi.org/10.1016/j.scitotenv.2017.02.095

Camara, P. (2017). Topological methods for genomics: present and future directions. Curr. Opin. Syst. Biol., 1, 95-101. https://doi.org/10.1016/j.coisb.2016.12.007

Cang, Z., Mu, L., & Wei, G. (2018). Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLOS Computational Biology, 14(1), e1005929. https://doi.org/10.1371/journal.pcbi.1005929

Cang, Z., Mu, L., Wu, K., Opron, K., Xia, K., & Wei, G. (2015). A topological approach for protein classification. Computational and Mathematical Biophysics, 3(1). https://doi.org/10.1515/mlbmb-2015-0009

Cang, Z., & Wei, G. (2018). Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction. International Journal for Numerical Methods in Biomedical Engineering, 34(2). https://doi.org/10.1002/cnm.2914

Cang, Z., & Wei, G. (2017). TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Computational Biology, 13(7), e1005690. https://doi.org/10.1371/journal.pcbi.1005690

Nakamura, T., Hiraoka, Y., Hirata, A., Escolar, E. G., & Nishiura, Y. (2015). Persistent homology and many-body atomic structure for medium range order in the glass. Nanotechnology, 26(30), 304001. https://doi.org/10.1088/0957-4484/26/30/304001

Carlsson, G., Zomorodian, A., Collins, A., & Guibas, L. (2004). Persistence barcodes for shapes. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (pp. 124-135). ACM. https://doi.org/10.1145/1057432.1057449

Carriere, M., Oudot, S., & Ovsjanikov, M. (2017). Sliced Wasserstein Kernel for Persistence Diagrams. In ICML 2017 - Thirty-fourth International Conference on Machine Learning (pp. 1-10). Sydney, Australia.

Carriere, M., Oudot, S. Y., & Ovsjanikov, M. (2015). Stable topological signatures for points on 3D shapes. In Proceedings of the Eurographics Symposium on Geometry Processing, SGP'15 (pp. 1-12). Aire-la-Ville, Switzerland: Eurographics Association. https://doi.org/10.1111/cgf.12692

Tran, Q. H., & Hasegawa, Y. (2019). Topological time-series analysis with delay-variant embedding. Phys. Rev. E, 99(3), 032209. https://doi.org/10.1103/PhysRevE.99.032209

Chen, C., & Freedman, D. (2010). Measuring and computing natural generators for homology groups. Computational Geometry, 43(2), 169-181. https://doi.org/10.1016/j.comgeo.2009.06.004

Chen, C., & Freedman, D. (2011). Hardness results for homology localization. Discrete and Computational Geometry, 45(3), 425-448. https://doi.org/10.1007/s00454-010-9322-8

Chung, M., Bubenik, P., & Kim, P. (2009). Persistence diagrams of cortical surface data. In Information processing in medical imaging (pp. 386-397). Springer. https://doi.org/10.1007/978-3-642-02498-6_32

Perea, J. A., & Harer, J. (2015). Sliding windows and persistence: An application of topological methods to signal analysis. Foundations of Computational Mathematics, 15(3), 799-838. https://doi.org/10.1007/s10208-014-9206-z

Kwitt, R., Huber, S., Niethammer, M., Lin, W., & Bauer, U. (2015). Statistical topological data analysis - a kernel perspective. In Advances in Neural Information Processing Systems 28 (pp. 3070-3078). Curran Associates, Inc.

Singh, N., Couture, H. D., Marron, J. S., Perou, C., & Niethammer, M. (2014). Topological descriptors of histology images. In Machine Learning in Medical Imaging (pp. 231-239). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-10581-9_29

Leon, J. L., Cerri, A., Reyes, E. G., & Diaz, R. G. (2013). Gait-based gender classification using persistent homology. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (pp. 366-373). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41827-3_46

Turner, K., Mukherjee, S., & Boyer, D. M. (2014). Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA, 3(4), 310–344. https://doi.org/10.1093/imaiai/iau011

Pike, J. A., Khan, A. O., Pallini, C., Thomas, S. G., Mund, M., Ries, J., Poulter, N. S., & Styles, I. B. (2020). Topological data analysis quantifies biological nano-structure from single molecule localization microscopy. Bioinformatics (Oxford, England), 36(5), 1614-1621. https://doi.org/10.1093/bioinformatics/btz788

Sauerwald, N., Shen, Y., & Kingsford, C. (2019). Topological data analysis reveals principles of chromosome structure through cellular differentiation. bioRxiv 540716. https://doi.org/10.1101/540716

Parida, L., Utro, F., Yorukoglu, D., Carrieri, A. P., Kuhn, D., & Basu, S. (2015). Topological signatures for population admixture. In T. M. Przytycka (Ed.), Research in Computational Molecular Biology (pp. 261-275). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-16706-0_27

Dey, T. K., Hirani, A. N., & Krishnamoorthy, B. (2011). Optimal homologous cycles, total unimodularity, and linear programming. SIAM Journal on Computing, 40(4), 1026-1044. https://doi.org/10.1137/100800245

Schofield, J. P. R., Strazzeri, F., Bigler, J., et al. (2019). A topological data analysis network model of asthma based on blood gene expression profiles. bioRxiv. https://doi.org/10.1101/516328

bibitem{37 Wheelock, K., Sun, K., Pandis, I., et al. (2019). A topological data analysis network model of asthma based on blood gene expression profiles. bioRxiv

Nicolau, M., Levine, A. J., & Carlsson, G. (2011). Topology-based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings of the National Academy of Sciences, 108(17), 7265-7270. https://doi.org/10.1073/pnas.1102826108

Dey, T. K., Sun, J., & Wang, Y. (2010). Approximating loops in a shortest homology basis from point data. In Proceedings of the Twenty-sixth Annual Symposium on Computational Geometry (pp. 166-175). ACM.

Pirooznia, M., Yang, J. Y., Yang, M. Q., & Deng, Y. (2008). A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics, 9 (Suppl 1), S13. https://doi.org/10.1186/1471-2164-9-S1-S13

Le, T., & Yamada, M. (2018). Persistence Fisher kernel: A Riemannian manifold kernel for persistence diagrams. In Advances in Neural Information Processing Systems 31 (pp. 10007-10018). Curran Associates, Inc.

Duman, A. N., & Pirim, H. (2018). Gene coexpression network comparison via persistent homology. International Journal of Genomics, 11. https://doi.org/10.1155/2018/7329576

Tarek, S., Abd Elwahab, R., & Shoman, M. (2017). Gene expression-based cancer classification. Egyptian Informatics Journal, 18(3), 151-159. https://doi.org/10.1016/j.eij.2016.12.001

van IJzendoorn, D. G. P., Szuhai, K., Briaire-de Bruijn, I. H., Kostine, M., Kuijjer, M. L., & Bovee, J. V. M. G. (2019). Machine Learning Analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies 101 therapeutic targets for soft tissue sarcomas. PLoS Computational Biology, 15(2), e1006826. https://doi.org/10.1371/journal.pcbi.1006826

bibitem{45 Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4741-4748). https://doi.org/10.1109/CVPR.2015.7299106

Obayashi, I. (2017). Volume optimal cycle: Tightest representative cycle of a generator on persistent homology. arXiv preprint arXiv:1712.05103.

Emmett, K., Rosenbloom, D., Camara, P., & Rabadan, R. (2014). Parametric inference using persistence diagrams: A case study in population genetics. arXiv.

Emmett, K., Schweinhart, B., & Rabadan, R. (2016). Multiscale topology of chromatin folding. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (pp. 177-180). https://doi.org/10.4108/eai.3-12-2015.2262453

Erickson, J., & Whittlesey, K. (2005). Greedy optimal homotopy and homology generators. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1038-1046).

Escolar, E. G., & Hiraoka, Y. (2016). Optimal cycles for persistent homology via linear programming. In Optimization in the Real World (pp. 79-96). Springer. https://doi.org/10.1007/978-4-431-55420-2_5

Wu, P., et al. (2017). Optimal topological cycles and their application in cardiac trabeculae restoration. In M. Niethammer et al. (Eds.), Information Processing in Medical Imaging. IPMI 2017 (Lecture Notes in Computer Science, Vol. 10265). Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_7

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images. April 8, 2009. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Mandal, S., Guzman-Saenz, A., Haiminen, N., Basu, S., & Parida, L. (2020). A topological data analysis approach on predicting phenotypes from gene expression data. In C. Martin-Vide, M. Vega-Rodriguez, & T. Wheeler (Eds.), Algorithms for Computational Biology. AlCoB 2020 (Lecture Notes in Computer Science, Vol. 12099). Springer, Cham. https://doi.org/10.1007/978-3-030-42266-0_14

Chang, Z., & Wei-Wei, G. (2020). Persistent cohomology for data with multicomponent heterogeneous information. SIAM J Math Data Sci., 2(2), 396-418. https://doi.org/10.1137/19M1272226

De Silva, D., Morozov, D., & Vejdemo-Johansson, M. (2011). Dualities in persistent (co)homology. Inverse Problems, 27(121), 124003. https://doi.org/10.1088/0266-5611/27/12/124003

Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E. G., Matsue, K., & Nishiura, Y. (2016). Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences, 113(26), 7035-7040. https://doi.org/10.1073/pnas.1520877113

Pokorny, F., Kjellstrom, H., Kragic, D., & Ek, C. (2012). Persistent Homology for Learning Densities with Bounded Support. In F. Pereira, C. J. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems (Vol. 25). Curran Associates, Inc.

Hwang, K. B., Cho, D. Y., Park, S. W., Kim, S. D., & Zhang, B. T. (2002). Applying machine learning techniques to analysis of gene expression data: cancer diagnosis. In S.M. Lin & K.F. Johnson (Eds.), Methods of Microarray Data Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0873-1_13

Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P. V., & Subramaniam, S. (1998). Analytical shape computation of macromolecules: II. molecular area and volume through alpha shape. Proteins, 33(1), 18-29. https://doi.org/10.1002/(SICI)1097-0134(19981001)33:1<18::AID-PROT2>3.0.CO;2-H

Kurlin, V. (2015). A fast persistence-based segmentation of noisy 2D clouds with provable guarantees. Pattern Recognition Letters, 83, 3-12. https://doi.org/10.1016/j.patrec.2015.11.025

Kong, Y., & Yu, T. (2018). A deep neural network model using random forest to extract feature representation for gene expression data classification. Scientists Reports, 8(1), 16477. https://doi.org/10.1038/s41598-018-34833-6

Kusano, G., Hiraoka, Y., & Fukumizu, K. (2016). Persistence weighted Gaussian kernel for topological data analysis. In Proceedings of The 33rd International Conference on Machine Learning, 48, 2004-2013. Available from https://proceedings.mlr.press/v48/kusano16.html

Kang, L., Xu, B., & Morozov, D. (2021). Evaluating state space discovery by persistent cohomology in the spatial representation system. Frontiers in Computational Neuroscience, 15. https://doi.org/10.3389/fncom.2021.616748

Adams, H., Tausz, A., & Vejdemo-Johansson, M. (2014). javaPlex: A research software package for persistent (co)homology. In Mathematical Software, ICMS 2014 - 4th International Congress, Proceedings (pp. 129-136). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 8592 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-662-44199-2_23

Schonsheck, N. C., & Schonsheck, S. C. Spherical coordinates from persistent cohomology. arXiv.org/pdf/2209.02791

Zomorodian, A., & Carlsson, G. (2005). Computing Persistent Homology. Discrete Comput. Geom., 33, 249-274. https://doi.org/10.1007/s00454-004-1146-y

Xia, K., & Wei, G. W. (2014). Persistent Homology analysis of protein structure, flexibility, and folding. IJNMBE, 30(8), 814-844. https://doi.org/10.1002/cnm.2655

Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2002). Topological persistence and simplification. Discrete Comput. Geom., 28(4), 511-533. https://doi.org/10.1007/s00454-002-2885-2

Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1150-1157. https://doi.org/10.1109/ICCV.1999.790410

Published
2024-02-08
How to Cite
Okediji, B. A., & Oladipo, A. T. (2024). Persistent Homology and Persistent Cohomology: A Review. Earthline Journal of Mathematical Sciences, 14(2), 349-378. https://doi.org/10.34198/ejms.14224.349378
Section
Articles