Bioconvection in a Porous Medium Saturated with a Casson Nanofluid
Abstract
The bio-convective heat transfer of an incompressible, viscous, electrically conducting Casson nanofluid past a wedge has been analyzed. Furthermore, using a similarity variable, the governing flow equations are transformed to non-linear coupled differential equations corresponding to a two-point boundary value problem, which is solved numerically. A comparison of the solution technique is carried out with previous work and the results are found to be in good agreement. Numerical results for the coefficient of skin friction, Nusselt number, Sherwood number, micro-organism flux as well as the velocity, temperature, nanoparticles and micro-organisms concentration profiles are presented for different physical parameters. The analysis of the obtained results shows that the field of flow is significantly influenced by these parameters.
References
Blasius, H. (1908). Grenzschichten in Flüssigkeiten mit kleiner Reibung (translated version). Z. Math-phys, 56, 1-37.
Aziz, A. (2009). A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simulat., 14, 1064-1068. https://doi.org/10.1016/j.cnsns.2008.05.003
Ishak, A. (2010). Similarity Solutions for flow and heat transfer over a permeable surface with convective boundary condition. Applied Mathematics and Computation, 217, 837-842. https://doi.org/10.1016/j.amc.2010.06.026
Ahmad, S. K., Isah, B. Y., & Altine, M. M. (2008). Chemical reaction effect on natural convective flow between fixed vertical plates with suction and injection. Nigerian Association of Mathematical Physics, 36, 131-140.
Asogwa. (2017). Numerical solution of hydromagnetic flow past an infinite vertical porous plate. Transactions of the Nigerian Association of Mathematical Physics, 4, 143-150.
Chamkha, A. J. (2004). Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. International Journal of Engineering Science, 42, 217-230. https://doi.org/10.1016/S0020-7225(03)00285-4
Oghre, E. O., & Ayeni, R. O. (2002). Viscous dissipation effect in a viscoelastic flow over a stretching surface. Nigerian Journal of Engineering Research and Development, 1, 28-36.
Elbashbeshy, E. M. A., & Bazid, M. A. A. (2000). The effect of temperature-dependent viscosity on the heat transfer over a continuous moving surface. J. Phys. D: Appl. Phys., 33, 2716–2721. https://doi.org/10.1088/0022-3727/33/21/309
Olanrewaju, P. O., & Makinde, O. D. (2012). Effects of thermal diffusion and diffusion thermo on chemically reacting MHD boundary layer flow of heat and mass transfer past a moving vertical plate with suction/injection. Arabian Journal for Science and Engineering, 36, 1607-1619. https://doi.org/10.1007/s13369-011-0143-8
Karim, M. E., & Uddin, M. J. (2011). Steady radiative free convection flow along a vertical flat plate in the presence of magnetic field. Daffodil International University Journal of Science and Technology, 6, 55-62. https://doi.org/10.3329/diujst.v6i2.9346
Das, K. (2012). Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties. Heat Mass Transfer, 48, 767-778. https://doi.org/10.1007/s00231-011-0924-3
Chaim, T. C. (1998). Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet. Acta Mechanica, 19, 63-72. https://doi.org/10.1007/BF01379650
Makinde, O. D. (2012). Computational modelling of MHD unsteady flow and heat transfer toward a flat plate with Navier slip and newtonian heating. Brazilian Journal of Chemical Engineering, 29, 159-166. https://doi.org/10.1590/S0104-66322012000100017
Helmy, K. A. (1995). MHD boundary layer equations for power-law fluids with variable electric conductivity. Meccanica, 30, 187-200. https://doi.org/10.1007/BF00990456
Das, K., Jana, S., & Kundu, P. K. (2015). Thermophoretic MHD slip flow over a permeable surface with variable fluid properties. Alexandria Engineering Journal, 54, 35-44. https://doi.org/10.1016/j.aej.2014.11.005
Pakravan, H. A., & Yaghoubi, M. (2011). Combined thermophoresis, Brownian motion and Dufour effects on natural convection of nanofluids. Int. J. of Thermal Sciences, 50, 394-402. https://doi.org/10.1016/j.ijthermalsci.2010.03.007
Akhigbe, S., & Oghre, E. O. (2017). Effects of thermophysical properties on a magnetohydrodynamic flow over a flat plate. Transactions of Nigerian Association of Mathematical Physics, 4, 234-241.
Mohammad, M. K., & Mohammad, E. (2013). Numerical Solution for the Falkner-Skan Boundary Layer Viscous Flow over a Wedge. Int. J. Eng. Sci, 10, 18-36.
Khan, W. A., & Makinde, O. D. (2014). MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively stretching sheet. Int. J. of Thermal Sciences, 81, 118-124. https://doi.org/10.1016/j.ijthermalsci.2014.03.009
Jana, S., & Das, K. (2015). Influence of variable fluid properties, thermal radiation and chemical reaction on MHD slip flow over a flat plate. Italian Journal of Pure and Applied Mathematics, 34, 29-44.
Ullah, I., Shafie, S., Makinde, O. D., & Khan, I. (2017). Unsteady MHD Falkner-Skan flow of Casson nanofluid with generative/destructive chemical reaction. Chemical Engineering Science, 172, 694-706. https://doi.org/10.1016/j.ces.2017.07.011
Khan, W. A., & Pop, I. (2013). Boundary layer flow past a wedge moving in a nanofluid. Mathematical Problems in Engineering, 2013, Art. ID 637285, 7 pp. https://doi.org/10.1155/2013/637285
Shaw, S., Kameswaran, P. K., Narayana, M., & Sibanda, P. (2014). Bioconvection in a non-Darcy porous medium saturated with a nanofluid and oxytactic microorganisms. Int. J. Biomathematics, 7, 1450005. https://doi.org/10.1142/S1793524514500053
Oyelakin, I. S., Mondal, S., Sibanda, P., & Sibanda, D. (2019). Bioconvection in Casson nanofluid flow with gyrotactic microorganisms and variable surface heat flux. Int. J. Biomathematics 12, 1950041. https://doi.org/10.1142/S1793524519500414
Atif, S. M., Hussain, S., & Sagheer, M. (2019). Magentohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms. AIP Advances, 9, 025208. https://doi.org/10.1063/1.5085742
This work is licensed under a Creative Commons Attribution 4.0 International License.