Dual Stratification Effects on Mixed Convective Electro-magnetohydrodynamic Flow over a Stretching Plate with Multiple Slips and Cross Diffusion

  • Mike Baako C. K. Tedam University of Technology and Applied Sciences, P. O. Box 24, Navrongo, Upper East Region, Ghana
  • Christian John Etwire C. K. Tedam University of Technology and Applied Sciences, P. O. Box 24, Navrongo, Upper East Region, Ghana
  • Golbert Aloliga C. K. Tedam University of Technology and Applied Sciences, P. O. Box 24, Navrongo, Upper East Region, Ghana
  • Yakubu Ibrahim Seini School of Engineering, University for Development Studies, Nyankpala Campus, Northern Region, Ghana
Keywords: dual stratification, multiple slips, magnetic field, electro-magnetohydrodynamic, cross diffusion


This paper analyzed the effects of dual stratification on mixed convective electro-magnetohydrodynamic flow over stretching plates with multiple slips. With the aid of the similarity transformation technique were, the governing boundary equations, that were partial differential equations, were changed to a couple of ordinary differential equations and then solved with fourth order Runge Kutta method and Newton’s Raphson shooting techniques. It was observed that the magnetic field, Buoyancy ratio, permeability, momentum slip parameters, Dufour, Soret and Brinkmann numbers made the thermal boundary layer thickness to increase but the solutal stratification, electric field, chemical reaction, solutal slip, suction, thermal slip and thermal stratification parameters, Prandtl, Richardson and Lewis number decreased the thickness of the thermal boundary layer. The Buoyancy ratio, permeability, momentum slip, thermal slip and thermal stratification parameters and Soret number enhanced the solutal boundary layer thickness.


Hayat, T., Waqas, M., Khan, M. I., & Alsaedi, A. (2016). Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. International Journal of Heat and Mass Transfer, 102, 1123-1129. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.090

Srinivasacharya, D., & Upendar, M. (2013). Effect of double stratification on MHD free convection in a micropolar fluid. Journal of Egyptian Mathematical Society, 21, 370-378. https://doi.org/10.1016/j.joems.2013.02.006

Jian, Y., & Chang, L. (2015). EMHD micropumps under a spatially non-uniform magnetic field. ATP Advances, 057121. https://doi.org/10.1063/1.4921085

Yahaya, S. D., & Faisal, S. (2018). Impact of thermal radiation on electrical MHD flow of nanofluid over a nonlinear stretching sheet with variable thickness. Alexandria Engineering Journal, 57, 2187-2197. https://doi.org/10.1016/j.aej.2017.07.007

Besthapy, P., Haq, R., Bandari, S., & Al-Mdallal. (2017). Mixed convection flow of thermally stratified MHD nanofluid over an exponentially stretching surface with viscous dissipation effect. Journal of Taiwan Institute of Chemical Engineers, 71, 307-314. https://doi.org/10.1016/j.jtice.2016.12.034

Mutuku, W. N., & Makinde, O. D. (2017). Double stratification effect on heat and mass transfer in unsteady MHD nanofluid flow over a flat surface. Asia Pacific Journal of Computational Engineering, 4, 2, https://doi.org/10.1186/s40540-017-0021-2

Khashi’ie, N. S., Arifin, N. M., & Hafidzuddin, E. H. (2019). Dual stratified nanofluid flow past a permeable shrinking/stretching sheet using non-Fourier energy model. Applied Sciences, 9, 2124. https://doi.org/10.3390/app9102124

Reddy, P. S., & Chamkha, A. J. (2015). Soret and Dufour effects on unsteady MHD heat and mass transfer from a permeable stretching sheet with thermophoresis and non-uniform heat generation absorption. Journal of Applied Fluid Mechanics, 9(5), 2443-2455. https://doi.org/10.18869/acadpub.jafm.68.236.25171

Dulal, P., Gopinath, M., & Kuppalaplle, V. (2016). Soret and radiative heat and mass transfer of nanofluid over a vertical nonlinear stretching shrinking sheet. Applied Mathematics and Computation, 287-288, 184-200. https://doi.org/10.1016/j.amc.2016.04.037

Gireesha, B. J., Kumar, K. G., Krishnamurthy, M. R., Manjunatha, S., & Rudraswamy, N. G. (2019). Impact of ohmic heating on MHD mixed convection flow of Casson fluid by considering cross diffusion effect. Nonlinear Engineering, 8(1), 380-388. https://doi.org/10.1515/nleng-2017-0144

Gbadeyan, J. A., Oyekunle, T. L., Fasogbon, P. F., & Abubakar, J. U. (2018). Soret and Dufour effects on heat and mass transfer in chemically reacting MHD flow through a wavy channel. Journal of Taibah University for Science, 12(5), 631-651. https://doi.org/10.1080/16583655.2018.1492221

Reddy, B. S. K., Rao, K. V. S. N., & Vijaya, R. B. (2020). Soret and Dufour effect on MHD flow of viscous elastic fluid pass on an infinite vertical stretching sheet. Heat Transfer, 49(4), 2330-2343. https://doi.org/10.1002/htj.21723

Rasool, G., Shafiq, A., & Baleanu, D. (2020). Consequences of Soret-Dufour effects on thermal radiation and binary chemical reaction on Darcy-Forchheimer flow of nanofluids. Symmetry, 12, 1421. https://doi.org/10.3390/sym12091421

Salleh, S. N. A., Bachok, N., Araifin, N. M., & Ali, F. M. (2020). Influence of Soret and Dufour on forced convection flow towards a moving thin needle considering Buongiorno's nanofluid model. Alexandria Engineering Journal, 59(5), 3897-3906. https://doi.org/10.1016/j.aej.2020.06.045

Bouslimi, J., Abdelhafez, M. A., Abd-Alla, A. M., Abo-Dahab, S. M., & Mahmoud, K. H. (2021). MHD mixed convection nanofluid flow over convectively heated nonlinear due to an extending surface with Soret Effect. Complexity, vol. 2021, Article ID 5592024, 20 pages. https://doi.org/10.1155/2021/5592024

Turkyilmazoglu, M. (2011). Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet. International Journal of Thermal Sciences, 50(11), 2264-2276. https://doi.org/10.1016/j.ijthermalsci.2011.05.014

Daniel, Y. S., Azie, Z. A., Ismail, Z., & Salah, F. (2017). Effects of MHD flow of nanofluids over a porous nonlinear stretching/shrinking sheet. Australian Journal of Mechanical Engineering, 16(3), 213-229. https://doi.org/10.1080/14484846.2017.1358844

Khan, S. A., Nie, Y., & Ali, B. (2020). Multiple slip effects on MHD unsteady viscoelastic nanofluid flow over a permeable stretching sheet with radiation using the finite element method. SN Applied Science, 2, 66. https://doi.org/10.1007/s42452-019-1831-3

Khan, S. A., Nie, Y., & Ali, B. E. (2019). Multiple effect MHD axisymmetric buoyant nanofluid flow above a stretching radiation and chemical reaction. Symmetry, 11(9), 1171. https://doi.org/10.3390/sym11091171

Mabood, F., & Shateyi, S. (2019). Multiple slip effect on MHD unsteady flow heat and mass transfer impinging on permeable stretching sheet with radiation. Modeling and Simulation in Engineering, vol. 2019, Article ID 3052790, 11 pages. https://doi.org/10.1155/2019/3052790

Wahid, N. S., Hafidzuddin, M. E. H., Arifin, N. M., Turkyilmazoglu, M., & Rahmia, N. A. A. (2020). MHD slip Darcy flow of viscoelastic fluid over a stretching sheet and heat transfer with thermal radiation and viscous dissipation. CFD Letters, 12(1), 1-12.

Abbas, W., Ahmed, M., Megahed, M., Ibrahim, A., Ahmed, A., & Said, M. (2023). Non-Newtonian slippery nanofluid flow due to a stretching sheet through a porous medium with heat generation and thermal slip. Journal of Nonlinear Mathematical Physics, https://doi.org/10.1007/s44198-023-00125-5

Ibrahim, W., & Gizewu, T. (2021). Thin film flow of tangent hyperbolic fluid with nonlinear mixed convection flow and entropy generation. Mathematical Problems in Engineering, 2021, 1-16. https://doi.org/10.1155/2021/4836434

Yin, Yu-Hang, Lü, Xing, & Ma, Wen-Xiu. (2022). Bäcklund transformation, exact solutions, and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dynamics, 108, 4181-4194. https://doi.org/10.1007/s11071-021-06531-y

Biswal, M. M., Swain, B. K., Das, M., & Gouranga, C. D. (2022). Heat and mass transfer in MHD stagnation-point flow toward an inclined stretching sheet embedded in a porous medium. Heat Transfer, 51, 4837-4857. https://doi.org/10.1002/htj.22525

Sher Akbar, N., & Mallawi, F. O. (2023). Numerical analysis of non-Newtonian nanofluids under double-diffusive regimes. Frontiers in Materials, 9, 1078467. https://doi.org/10.3389/fmats.2022.1078467

Shehzad, N., Zeeshan, A., Shakeel, M., Ellahi, R., & Sait, S. M. (2022). Effects of magnetohydrodynamics flow on multilayer coatings of Newtonian and non-Newtonian fluids through porous inclined rotating channel. Coatings, 12, 430. https://doi.org/10.3390/coatings12040430

Kumar, D., & Sahu, A. K. (2022). Non-Newtonian fluid flow over a rotating elliptic cylinder in laminar flow regime. European Journal of Mechanics, 93, 117-136. https://doi.org/10.1016/j.euromechflu.2022.01.005

Goyal, M., & Bhargava, R. (2014). Boundary layer flow and heat transfer of viscoelastic nanofluids past a stretching sheet with partial slip conditions. Applied Nanoscience, 4, 761-767.

Wang, C. Y. (1989). Free convection on a vertical stretching surface. Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 69(11), 418-420. https://doi.org/10.1002/zamm.19890691115

Gorla, R. S. R., & Sidawi, I. (1994) Free convection on a vertical stretching surface with suction and blowing. Applied Scientific Research, 52, 247-257. https://doi.org/10.1007/BF00853952

How to Cite
Baako, M., Etwire, C. J., Aloliga, G., & Seini, Y. I. (2023). Dual Stratification Effects on Mixed Convective Electro-magnetohydrodynamic Flow over a Stretching Plate with Multiple Slips and Cross Diffusion. Earthline Journal of Mathematical Sciences, 14(1), 75-103. https://doi.org/10.34198/ejms.14124.075103