The Inverse Burr-Generalized Family of Distributions: Theory and Applications
Abstract
This paper presents a new class of generalized distributions based on the inverse Burr (Burr III) distribution. Statistical properties of the proposed family of distributions such as the density and cumulative distribution functions, survival and hazard rate functions, quantile, moments, moment generating function, probability weighted moments, Renyi entropy and distribution of order statistics are derived. The maximum likelihood estimation method is employed to obtain the parameter estimates of the family of distributions. A Monte Carlo simulation study is conducted in order to investigate the asymptotic behaviour of the parameter estimates of a sub-model from the proposed family of distributions. Finally, the utility of proposed family of distributions in lifetime data fittings is illustrated using two real data sets and the results obtained were compared to some existing non-nested models. Based on some model selection criteria and goodness of fit test statistics, it was evident that the sub-model from the proposed family of distributions performed reasonably better than the competitor distributions in fitting the two data sets.
References
Altun, E. (2019). The log-weighted exponential regression model: alternative to the beta regression model. Communications in Statistics-Theory and Methods, 50(10), 2306-2321. https://doi.org/10.1080/03610926.2019.1664586
Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63-79. https://doi.org/10.1007/s40300-013-0007-y
Bantan, R. A. R., Jamal, F., Chesneau, C., & Elgarhy, M. (2021). Theory and applications of the unit Gamma/Gompertz distribution. Mathematics, 9(1850), 1-22. https://doi.org/10.3390/math9161850
Bhatti, F. A., Ali, A., Hamedani, G. G., Korkmaz, M. C., & Ahmad, M. (2018). The unit generalized $log$ Burr XII distribution: properties and application. AIMS Mathematics, 6(9), 10222-10252. https://doi.org/10.3934/math.2021592
Burr, I. W. (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13, 215-232. https://doi.org/10.1214/aoms/1177731607
Burr, I. W., & Cislak, P. J. (1968). On a general system of distributions: I. Its curved-shaped characteristics; II. The sample median. Journal of the American Statistical Association, 63, 627-635. https://doi.org/10.1080/01621459.1968.11009281
Bourguignon, M., Silva, R. B., & Cordeiro, G. M. (2014). The Weibull-G Family of Probability Distributions. Journal of Data Science, 12(1), 53-68. https://doi.org/10.6339/jds.201401_12(1).0004
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81, 883-898. https://doi.org/10.1080/00949650903530745
Chesneau, C., & Opone, F. C. (2022). The power continuous Bernoulli distribution: Theory and Applications. Reliability: Theory & Application, 17(4), 232-248.
Ehiwario, J. C., Igabari, J. N., & Ezimadu, P. E. (2023). The alpha power Topp-Leone distribution: properties, simulations and applications. Journal of Applied Mathematics and Physics, 11, 316-331. https://doi.org/10.4236/jamp.2023.111018
Eugene, N., Lee, C., & Famoye, F. (2002). The beta-normal distribution and its applications. Communications in Statistics-Theory and Methods, 31, 497-512. https://doi.org/10.1081/sta-120003130
George, R., & Thobias, S. (2017). Marshall-Olkin Kumaraswamy distribution. International Mathematical Forum, 12(2), 47-69. https://doi.org/10.12988/imf.2017.611151
Greenwood, J. A., Landwehr, J. M., & Matalas, N. C. (1979). Probability weighted moments: Definitions and relations of parameters of several distributions expressible in inverse form. Water Resources Research, 15, 1049-1054. https://doi.org/10.1029/wr015i005p01049
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions. John Wiley, New York.
Korkmaz, M., & Chesneau, C. (2021). On the unit Burr-XII distribution with the quantile regression modeling and applications. Computational and Applied Mathematics, 40(1), 1-26. https://doi.org/10.1007/s40314-021-01418-5
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random process. Journal of Hydrology, 46, 79-88. https://doi.org/10.1016/0022-1694(80)90036-0
Lanjoni, B. R., Ortega, E. M. M., & Cordeiro, G. M. (2015). Extended Burr XII regression models: theory and applications. Journal of Agricultural, Biological, and Environmental Statistics. https://doi.org/10.1007/s13253-015-0236-z
Marshall A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families. Biometrika, 84, 641-652. https://doi.org/10.1093/biomet/84.3.641
Mazucheli, J., Menezes, A. F. B., & Dey, S. (2019). Unit-Gompertz Distribution with Applications. Statistica, 79(1), 25-43.
Mazucheli, J., Menezes, A. F. B., Fernandes, L. B., de Oliveira, R. P., & Ghitany, M. E. (2019). The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. Journal of Applied Statistics. https://doi.org/10.1080/02664763.2019.1657813
Modi, K., & Gill, V. (2020). Unit Burr-III distribution with application. Journal of Statistics and Management Systems, 23, 579-592. https://doi.org/10.1080/09720510.2019.1646503
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. M. (2015). The Zografos-Balakrishnan-G family of distributions: mathematical properties and applications. Communications in Statistics-Theory and Methods, 44, 186-215. https://doi.org/10.1080/03610926.2012.740127
Nigm, A. M., AL-Hussaini, E. K., & Jaheen, Z. F. (2003). Bayesian one-sample prediction of future observations under Pareto distribution. Statistics, 37(6), 527-536. https://doi.org/10.1080/02331880310001598837
Opone, F. C., & Ekhosuehi, N. (2017). A study on the moments and performance of the maximum likelihood estimates (MLE) of the beta distribution. Journal of the Mathematical Association of Nigeria (Mathematics Science Series), 44(2), 148-154.
Opone, F., Ekhosuehi, N., & Omosigho, S. (2022). Topp-Leone power Lindley distribution (TLPLD): Its properties and application. Sankhya A, 84, 597-608. https://doi.org/10.1007/s13171-020-00209-0
Opone, F. C., & Iwerumor, B. N. (2021). A new Marshall-Olkin extended family of distributions with bounded support. Gazi University Journal of Science, 34(3), 899-914. https://doi.org/10.35378/gujs.721816
Osatohanmwen, P., Oyegue, F. O., & Ogbonmwan, S. M. (2019). A new member from the $T-X$ family of distributions: the Gumbel-Burr XII distribution and its properties. Sankhya A, 81, 298-322. https://doi.org/10.1007/s13171-017-0110-x
Osemwenkhae, J. E., & Iyenoma, K. O. (2018). On the inverse Burr distribution: Its properties and applications. Journal of the Nigerian Association of Mathematical Physics, 48, 61-66.
Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and Series, 1. Gordon and Breach Science Publishers, Amsterdam.
Rényi, A. (1961). On measure of entropy and information. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, 1, 547-561.
Shaw, W., & Buckley, I. (2009). The alchemy of probability distributions: beyond Gram-Charlier expansions and a skew-kurtotic normal distribution from a rank transmutation map. arXiv preprint, arXiv:0901.0434.
Silva, R. B., & Cordeiro, G. M. (2015). The Burr XII power series distributions: a new compounding family. Brazilian Journal of Probability and Statistics, 29(3), 565-589. https://doi.org/10.1214/13-bjps234
Silva, G. O., Ortega, E. M. M., Garibay, V. C., & Barrreto, M. L. (2008). Log-Burr XII regression models with censored data. Computational Statistics and Data Analysis, 52, 3820-3842. https://doi.org/10.1016/j.csda.2008.01.003
Stock, J. H., & Watson, M. W. (2007). Introduction to Econometrics (2nd ed.). Addison Wesley, Boston, MA, USA. Available online: https://rdrr.io/cran/AER/man/GrowthSW.html
Tadikamalla, P. R. (1980). A look at the Burr and related distributions. International Statistical Review, 48, 337-344. https://doi.org/10.2307/1402945
This work is licensed under a Creative Commons Attribution 4.0 International License.