$\left(LCS\right)_{n}-$Manifolds Admitting Almost $\eta-$Ricci Solitons on Some Special Curvature Tensors

  • Tuğba Mert Department of Mathematics, University of Sivas Cumhuriyet, 58140, Sivas, Turkey
  • Mehmet Atçeken Department of Mathematics, University of Aksaray, 68100, Aksaray, Turkey
  • Pakize Uygun Department of Mathematics, University of Aksaray, 68100, Aksaray, Turkey
  • Shashikant Pandey Department of Mathematics and Astronomy, University of Lucknow, India
Keywords: $\left(LCS\right)_{n}-$manifold, Ricci-pseudosymmetric manifold, $\eta-$Ricci soliton

Abstract

In this paper, we consider $\left(LCS\right)_{n}$ manifold admitting almost $\eta-$Ricci solitons by means of curvature tensors. Ricci pseudosymmetry concepts of $\left(LCS\right)_{n}$ manifold admitting $\eta-$Ricci soliton have introduced according to the choice of some special curvature tensors such as pseudo-projective, $W_{1}$, $W_{1}^{\ast}$ and $W_{2}.$ Then, again according to the choice of the curvature tensor, necessary conditions are searched for $\left(LCS\right)_{n}$ manifold admitting $\eta-$Ricci soliton to be Ricci semisymmetric. Then some characterizations are obtained and some classifications have made.

Downloads

Download data is not yet available.

References

A.A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2003), 305-314.

A.A. Shaikh and H. Ahmad, Some transformations on $left(LCSright)_{n}$ manifolds, Tsukuba J. Math. 38 (2014), 1-24. https://doi.org/10.21099/tkbjm/1407938669

C.A. Mantica and L.G. Molinari, A note on concircular structure spacetimes, Commun. Korean Math. Soc. 34(2) (2019), 633-635.

A.A. Shaikh and T.Q. Binh, On weakly symmetric $left(LCSright) _{n}$ manifolds, J. Adv. Math. Stud. 2 (2009), 75-90.

A.A. Shaikh, T. Basu and S. Eyasmin, On the existence of $Phi-$recurrent $left(LCSright)_{n}$ manifolds, Extracta Math. 23 (2008), 71-83.

A.A. Shaikh and S.K. Hui, On generalized $Phi-$recurrent $left(LCSright)_{n}$ manifolds, AIP Conf. Proc. 1309 (2010), 419-429. https://doi.org/10.1063/1.3525143

A.A. Shaikh, Y. Matsuyama and S.K. Hui, On invariant submanifolds of $left(LCSright)_{n}$ manifolds, J.Egyptian Math. Soc. 24 (2016), 263-269. https://doi.org/10.1016/j.joems.2015.05.008

A.A. Shaikh, B.R. Datta, A. Ali and A.H. Alkhaldi, (LCS) manifolds and Ricci solitons, Int. J. Geom. Methods Mod. Phys. 18(09) (2021), 2150138. https://doi.org/10.1142/s0219887821501383

K.K. Baishy, More on $eta-$Ricci Solitons in $left(LCSright)_{n}-$Manifolds, Bulletin of the Transilvabia University of Braşov. 11(60) (2018), No.1.

M. Atçeken, Ü. Yıldırım and S. Dirik, Pseudoparallel invariant submanifolds of $left(LCSright)_{n}-$manifolds, Korean J. Math. 28(2) (2020), 275-284.

S.K. Hui, R.C. Lemence and D. Chakraborty, Ricci solitons on Ricci Pseudosymmetric $left(LCSright)_{n}-$manifolds, Honam Mathematical J. 40(2) (2018), 325-346.

A.A. Shaikh, Some results on $left(LCSright)_{n}-$manifolds, J. Korean Math. Soc. 46(33) (2009), 449-461.

R.S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom. 17(2) (1982), 255-306. https://doi.org/10.4310/jdg/1214436922

J.T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61(2) (2009), 205-212. https://doi.org/10.2748/tmj/1245849443

C. Calin and M. Crasmareanu, $eta-$Ricci solitons on Hopf hypersurfaces in complex space forms, Revue Roumainede Mathematiques pureatappliques 57(1) (2021), 55-63.

R. Sharma, Certain results on $k-$contact and $left( kappa,muright) -$contact manifolds, J. of Geom. 89 (2008), 138-147. https://doi.org/10.1007/s00022-008-2004-5

R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053-1065. https://doi.org/10.1515/dema-1989-0411

Published
2023-07-03
How to Cite
Mert, T., Atçeken, M., Uygun, P., & Pandey, S. (2023). $\left(LCS\right)_{n}-$Manifolds Admitting Almost $\eta-$Ricci Solitons on Some Special Curvature Tensors. Earthline Journal of Mathematical Sciences, 13(2), 291-311. https://doi.org/10.34198/ejms.13223.291311
Section
Articles