Maclaurin Coefficient Estimates for a New General Subclasses of m-Fold Symmetric Holomorphic Bi-Univalent Functions
Abstract
The purpose of the present paper is to introduce and investigate two new general subclasses $\mathcal{M} \mathcal{A}_{\Sigma_{m}}(\delta, \lambda ; \alpha)$ and $\mathcal{M} \mathcal{A}_{\Sigma_{m}}(\delta, \lambda ; \beta)$ of $\Sigma_{m}$ consisting of holomorphic and m-fold symmetric bi-univalent functions defined in the open unit disk $U$. For functions belonging to the two classes introduced here, we derive estimates on the initial coefficients $\left|d_{m+1}\right|$ and $\left|d_{2 m+1}\right|$. We get new special cases for our results. In addition, Several related classes are also investigated and connections to earlier known outcomes are made.
References
Ş. Altinkaya and S. Yalçin, Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, J. of Math., vol. 2015, Art. ID 241683, 5 pp. https://doi.org/10.17114/j.aua.2018.55.02
W. G. Atshan and N. A. J. Al-Ziadi, Coefficients bounds for a general subclasses of m-fold symmetric bi-univalent functions, J. Al-Qadisiyah Comput. Sci. Math. 9(2) (2017), 33-39. https://doi.org/10.29304/jqcm.2017.9.2.141
D. Brannan and J. G. Clunie (Eds.), Aspects of contemporary complex analysis, (Proceedings of the NATO advanced study institute held at the Univ. of Durham, Durham; July 1-20, 1979), New York, London : Academic Press, 1980.
P. L. Duren, Univalent Functions, Vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 1983.
W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc. 105 (1989), 324-329. https://doi.org/10.1090/S0002-9939-1989-0930244-7
T. R. K. Kumar, S. Karthikeyan, S. Vijayakumar and G. Ganapathy, Initial coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions, Advances in Dynamical Systems and Applications 16(2) (2021), 789-800. https://doi.org/10.34198/ejms.6221.209223
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.1090/s0002-9939-1967-0206255-1
G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abstract and Applied Analysis, vol. 2013, Art. ID 573017, 3 pp. https://doi.org/10.1155/2013/573017
C. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962), 259-269.
A. M. Ramadhan and N. A. J. Al-Ziadi, Coefficient bounds for new subclasses of m-fold symmetric holomorphic bi-univalent functions, Earthline Journal of Mathematical Sciences 10(2) (2022), 227-239. https://doi.org/10.34198/ejms.10222.227239
H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis 41 (2015), 153164. https://doi.org/10.17114/j.aua.2015.41.12
H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia 36(3) (2016), 863-871. https://doi.org/10.1016/s0252-9602(16)30045-5
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical J. 7(2) (2014), 1-10. https://doi.org/10.2478/tmj-2014-0011
A. K. Wanas and H. K. Raadhi, Maclaurin coefficient estimates for a new subclasses of m-fold symmetric bi-univalent functions, Earthline Journal of Mathematical Sciences 11(2) (2023), 2581-8147. https://doi.org/10.34198/ejms.11223.199210
This work is licensed under a Creative Commons Attribution 4.0 International License.