On Inequalities for the Ratio of v-Gamma and v-Polygamma Functions
Abstract
In this paper, the author presents some double inequalities involving a ratio of v-Gamma and v-polygamma functions. The approach makes use of the log-convexity property of v-Gamma function and the monotonicity property of v-polygamma function. Some of the results also give generalizations and extensions of some previous results.
References
R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Matematicas 15 (2007), 179-192.
R. Diaz and C. Teruel, q, k-Generalized Gamma and beta functions, Journal of Nonlinear Mathematical Physics 12(1) (2005), 118-134. https://doi.org/10.2991/jnmp.2005.12.1.10
S. S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science direct working paper (S1574-0358), 04 (2003).
E. Djabang, K. Nantomah and M. M. Iddrisu, On a v-analogue of the Gamma function and some associated inequalities, J. Math. Comput. Sci. 11(1) (2020), 74-86. https://doi.org/10.28919/jmcs/5047
İ. Ege, On defining the generalized Gamma function, Note di Matematica 39(1) (2019), 107-116. https://doi.org/10.1285/i15900932v39n1p107
D. Karp and S. M. Sitnik, Log-convexity and log-concavity of hypergeometric-like functions, Journal of Mathematical Analysis and Applications 364(2) (2010), 384-394. https://doi.org/10.1016/j.jmaa.2009.10.057
V. Krasniqi and F. Merovci, Generalization of some inequalities for the special functions, J. Inequal. Spec. Funct. 3 (2012), 34-40.
V. Krasniqi, H. M. Srivastava and S. S. Dragomir, Some complete monotonicity properties for the (p, q)-gamma function, Applied Mathematics and Computation 219(21) (2013), 10538-10547. https://doi.org/10.1016/j.am.amc.2013.04.034
D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis. Mathematics and its Applications (East European Series), Vol. 61, Springer, 2010.
K. Nantomah and M. M. Iddrisu, The k-analogue of some inequalities for the gamma function, Electronic Journal of Mathematical Analysis and Applications 2(2) (2014), 172-177.
K. Nantomah and İ Ege, A lambda analogue of the Gamma function and its properties, Researches in Mathematics 30(2) (2022), 18-29. https://doi.org/10.15421/242209
K. Nantomah, E. Prempeh and S. B. Twum, On a (p, k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis 2(2) (2016), 79-90. https://doi.org/10.7603/s40956-016-0006-0
A. S. Shabani, Generalization of some inequalities for the Gamma function, Mathematical Communications 13(2) (2008), 271-275.
N. V. Vinh and N. P. N. Ngoc, An inequality for the Gamma function, International Mathematical Forum 4(28) (2009), 1379-1382.
Z.-H. Yang, On the log-convexity of two-parameter homogeneous functions, Mathematical Inequalities and Applications 10(3) (2007), 499-506. https://doi.org/10.7153/mia-10-47
This work is licensed under a Creative Commons Attribution 4.0 International License.