Applications of (p, q)-Gegenbauer Polynomials on a Family of Bi-univalent Functions
Abstract
In this work, we investigate the (p, q)-Gegenbauer polynomials for a class of analytic and bi-univalent functions defined in the open unit disk, with respect to subordination. We give an elementary proof to establish some estimates for the coefficient bounds for functions in the new class. We conclude the study by giving a result of the Fekete-Szegö theorem. A corollary was given to show some results of some subclasses of our new class.
References
J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. Second Series 17(1) (1915), 12-22. https://doi.org/10.2307/2007212
I. Al-Shbeil, A. K. Wanas, A. Benali and A. Catas, Coefficient bounds for a certain family of bi-univalent functions defined by Gegenbauer polynomials, J. Math. 2022 (2022), Art. ID 6946424, 1-7. https://doi.org/10.1155/2022/6946424
A. Amourah, A. G. Al-Amoush and M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palestine J. Math. 10 (2021), 625-632. https://doi.org/10.3390/math10142462
I. T. Awolere and A. T. Oladipo, Coefficients of bi-univalent functions involving pseudo-starlikeness associated with Chebyshev polynomials, Khayyam J. Math. 5 (2019), 140-149. https://doi.org/10.22034/kjm.2019.81231
R. O. Ayinla and T. O. Opoola, Initial coefficient bounds and second Hankel determinant for a certain class of bi-univalent functions using Chebyshev polynomials, Gulf J. Math. 14 (2023), 160-172. https://doi.org/10.56947/gjom.v14i1.1092
S. Bulut and N. Magesh, On the sharp bounds for a comprehensive class of analytic and univalent functions by means of Chebyshev polynomials, Khayyam J. Math. 2 (2016), 194-200. https://doi.org/10.22034/kjm.2017.43707
B. A. Frasin, Coefficient inequalities for certain classes of Sakaguchi type functions, Int. J. Nonlinear Sci. 10 (2010), 206-211.
J. M. Jahangiri, C. Ramachandran and S. Annamalai, Fekete-Szegö problem for certain analytic functions defined by hypergeometric functions and Jacobi polynomial, J. Fract. Calc. Appl. 9 (2018), 1-7. http://fcag-egypt.com/Journals/JFCA/
D. Kavitha and K. Dhanalakshmi, Studies on coefficient estimates and Fekete-Szegö problem for a class of bi-univalent functions associated with (p, q)-Chebyshev polynomials, Commun. Math. Appl. 12(3) (2021), 691-697.
C. Kizilatecs, N. Tuğlu and B. Çekim, On the (p, q)-Chebyshev polynomials and related polynomials, Math. 7 (2019), 1-12. https://doi.org/10.3390/math7020136
A. O. Lasode, Estimates for a generalized class of analytic and bi-univalent functions involving two q-operators, Earthline J. Math. Sci. 10(2) (2022), 211-225. https://doi.org/10.34198/ejms.10222.211225
A. O. Lasode and T. O. Opoola, On a generalized class of bi-univalent functions defined by subordination and q-derivative operator, Open J. Math. Anal. 5 (2021), 46-52. https://doi.org/10.30538/psrp-oma2021.0092
A. O. Lasode and T. O. Opoola, Hankel determinant of a subclass of analytic and bi-univalent functions defined by means of subordination and q-differentiation, Int. J. Nonlinear Anal. Appl. 13(2) (2022), 3105-3114. https://doi.org/10.22075/IJNAA.2022.24577.2775
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
J. C. Mason, Chebyshev polynomial approximations for the L-membrane eigenvalue problem, SIAM J. Appl. Math. 15 (1967), 172-186. http://www.jstor.org/stable/2946162
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Ration. Mech. Anal. 32 (1969), 100–112. https://doi.org/10.1007/BF00247676
S. Owa, T. Sekine and R. Yamakawa, On Sakaguchi type functions, Appl. Math. Computat. 187 (2007), 356-361. https://doi.org/10.1016/j.amc.2006.08.133
E. A. Oyekan, Certain geometric properties of functions involving Galuê type Struve function, Annals Math. Computat. Sci. 8 (2022), 43-53.
E. A. Oyekan, Gegenbauer polynomials for certain subclasses of Bazilevič functions associated with a generalized operator defined by convolution, Gulf J. Math. 14 (2023), 77-88. https://doi.org/10.56947/gjom.v14i2.967
E. A. Oyekan and S. O. Aderibola, New results on the Chebyshev polynomial bounds for classes of univalent functions, Asia Pac. J. Math. 7 (2020), 12-22. https://doi.org/10.28924/APJM/7-24
E. A. Oyekan and I. T. Awolere, Polynomial bounds for bi-univalent functions associated with the probability of generalized distribution defined by generalized polylogarithms via Chebyshev polynomials, Coast J. Fac. Sci. Technol., Okitipupa, 2 (2020), 222-224.
E. A. Oyekan and I. T. Awolere, A new subclass of univalent functions connected with convolution defined via employing a linear combination of two generalized differential operators involving sigmoid function, Maltepe J. Math. 2(2) (2020), 82-96.
E. A. Oyekan, I. T. Awolere and P. O. Adepoju, Results for a new subclass of analytic functions connected with Opoola differential operator and Gegenbauer polynomials, Acta Universitatis Apulensis (accepted).
E. A. Oyekan and A. O. Lasode, Estimates for some classes of analytic functions associated with Pascal distribution series, error function, Bell numbers and q-differential operator, Nigerian J. Math. Appl. 32 (2022), 163-173. http://www.njmaman.com/articles/2022/PAPER14.pdf
E. A. Oyekan and T. O. Opoola, On subclasses of bi-univalent functions defined by generalized Sălăgean operator related to shell-like curves connected with Fibonacci numbers, Libertas Math. (New Series) 41 (2021), 1-20.
M. S. Robertson, On the theory of univalent functions, Annals Math. 37(2) (1936), 374-408. https://doi.org/10.2307/1968451
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11(1) (1959), 72-75. https://doi.org/10.2969/jmsj/01110072
T. G. Shaba and A. K. Wanas, Coefficient bounds for a new family of bi-univalent functions associated with (U, V)-Lucas polynomials, Int. J. Nonlinear Anal. Appl. 13 (2022), 615-626. https://doi.org/10.22075/IJNAA.2021.23927.2639
H. M. Srivastava, A. K. Mishra and P. Gochhayt, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
D. K. Thomas, N. Tuneski and A. Vasudevarao, Univalent Functions : A Primer, Walter de Gruyter Inc, Berlin, 2018. https://doi.org/10.1515/9783110560961-001
A. K. Wanas, New families of bi-univalent functions governed by Gegenbauer polynomials, Earthline J. Math. Sci. 7(2) (2021), 403-427. https://doi.org/10.34198/ejms.7221.403427
A. K. Wanas and L. -I. Cotirla, New applications of Gegenbauer polynomials on a new family of bi-Bazilevic functions governed by the q-Srivastava-Attiya operator, Math. 10 (2022), Art. ID 1309, 1-9. https://doi.org/10.3390/math10081309
This work is licensed under a Creative Commons Attribution 4.0 International License.