${\rm ({P_g}^*)}$-modules
Abstract
The aim of this article is to investigate the notion of ${\rm ({P_g}^*)}$-modules. We looked at some of these modules properties and characterizations. Moreover, relationships between a ${\rm ({P_g}^*)}$-module and other modules are also discussed.
References
E. Büyükaşik and Y. Demirci, Weakly distributive modules. Applications to supplement submodules, Proc. Indian Acad. Sci. (Math. Sci.) 120 (2010), 525-534. https://doi.org/10.1007/s12044-010-0053-9
T. Y. Ghawi, Some generalizations of g-lifting modules, Journal of Al-Qadisiyah for Computer Science and Mathematics 15(1) (2023), 109-121.
K. R. Goodearl, Ring Theory, Nonsingular Rings and Modules, Dekker, New York, 1976.
D. Keskin and W. Xue, Generalizations of lifting modules, Acta Math. Hungar. 91(3) (2001), 253-261.
B. Koşar, C. Nebiyev and N. Sӧkmez, G-supplemented modules, Ukrainian Math. J. 67(6) (2015), 861-864.
B. Koşar, C. Nebiyev and A. Pekin, A generalization of g-supplemented modules, Miskolc Mathematical Notes 20(1) (2019), 345-352. https://doi.org/10.18514/mmn.2019.2586
A. C. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasgow Math. J. 48(3) (2006), 533-545. https://doi.org/10.1017/s0017089506003260
T. C. Quynh and P. H. Tin, Some properties of e-supplemented and e-lifting modules, Vietnam J. Math. 41(3) (2013), 303-312. https://doi.org/10.1007/s10013-013-0022-6
L. V. Thuyet and P. H. Tin, Some characterizations of modules via essentially small submodules, Kyungpook Math. J. 56 (2016), 1069-1083. https://doi.org/10.5666/kmj.2016.56.4.1069
B. Ungor, S. Halicioglu and A. Harmancı, On a class of δ-supplemented modules, Bull. Malays. Math. Sci. Soc. 37(3) (2014), 703-717.
R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
D. X. Zhou and X. R. Zhang, Small-essential submodules and Morita duality, Southeast Asian Bull. Math. 35 (2011), 1051-1062.
This work is licensed under a Creative Commons Attribution 4.0 International License.