Best Bounds for Fekete-Szegö Functional for the kth Root Transform of Certain Subclasses of Sakaguchi Type functions

  • P. Lokesh Department of Mathematics, Adhiparasakthi College of Engineering, Kalavai, India
  • Chinthamani S Department of Mathematics, Stella Maris College (Autonomous), Chennai, India
Keywords: analytic functions, subordination, kth root transformation, Sakaguchi function, Fekete-Szegö inequality

Abstract

In recent research, working on coefficient bounds is very popular and useful to deal with geometric properties of the underlying functions. In this work, two new subclasses of Sakaguchi type functions with respect to symmetric points through subordination are considered. Moreover, the initial coefficients and the sharp upper bounds for the functional $|\rho_{2k+1}-\mu \rho_{k+1}^{2}|$ corresponding to $k^{th}$ root transformation belong to the above classes are obtained and thoroughly investigated.

References

O. P. Ahuja and M. Jahangiri, Fekete-Szegö problem for a unified class of analytic functions, Panamer. Math. J. 7(2) (1997), 67-78.

R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szegö coefficient functional for the transforms of analytic functions, Bull. Iranian Math. Soc. 35(2) (2009), 119-142.

R. M. Ali, V. Ravichandran and N. Seerivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187(1) (2007), 35-46.

L. de Branges de Bourcia, A proof of Bieberbach conjecture, Acta Mathematica (1985), 137-152. https://doi.org/10.1007/bf02392821

N. E. Cho and S. Owa, On the Fekete-Szegö problem for strongly a logarithmic quasi convex functions, Southeast Asian Bull. Math. 28(3) (2004), 421-430. https://doi.org/10.5556/j.tkjm.34.2003.269

R. N. Das and P. Singh, On subclasses of schlicht mapping, Indian J. Pure Appl. Math. 8 (1977), 864-872.

R. M. El-Ashwah, M. K. Aouf and F. M. Abdulkaren, Fekete-Szegö inequality for certain class of analytic function of complex order, Int. J. Open Problem Complex Anal. 6(1) (2014). https://doi.org/10.12816/0006022

F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org/10.1090/s0002-9939-1969-0232926-9

O. S. Kwon and N. E. Cho, On the Fekete-Szegö problem for certain analytic functions, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 10(4) (2003), 265-271.

S. S. Miller and P. T. Mocanu, Differential Subordination : Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York, 2000.

J. W. Noonan and D. K. Thomas, On the second Hankel Determinant of a really mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. https://doi.org/10.1090/s0002-9947-1976-0422607-9

T. Panigrahi and S. K. Mohapatra, Coefficient functional for the kth root transform of analytic function and applications to fractional derivatives, Fract. Diff. Cal. 8(1) (2018), 191-203. https://doi.org/10.7153/fdc-2018-08-12

T. Panigrahi and G. Murugusundaramoorthy, The Fekete-Szegö inequality for subclass of analytic function of complex order, Adv. Stud. Contemp. Math. 24(1) (2014), 67-75.

T. Panigrahi, G. Murugusundaramoorthy and S. K. Mohapatra, Fekete-Szegö problems for the kth root transform of subclasses of starlike convex functions with respect to symmetric points, Monties Taurus J. Pure Appl. Math. 3(3) (2021), 172-181. https://doi.org/10.21136/mb.2014.143938

T. RamReddy, D. Shalini, D. Vamshee Krishna and B. Venkateswarlu, Coefficient inequality for transforms of certain subclass of analytic functions, Acta Et Commentationes Universitati Startuensis De Mathematica 21(2) (2017), 185-193. https://doi.org/10.12697/acutm.2017.21.12

V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyhazi (N.S.) 20(1) (2004), 31-37.

K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.

T. N. Shanmugam, C. Ramachandran and V. Ravichandran, Fekete-Szegö problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43, 589-598. https://doi.org/10.4134/bkms.2006.43.3.589

Published
2023-04-21
How to Cite
Lokesh, P., & Chinthamani S. (2023). Best Bounds for Fekete-Szegö Functional for the kth Root Transform of Certain Subclasses of Sakaguchi Type functions. Earthline Journal of Mathematical Sciences, 12(2), 227-242. https://doi.org/10.34198/ejms.12223.227242
Section
Articles