Bi-univalent Function Subclasses Subordinate to Horadam Polynomials

Keywords: regular function, bi-univalent function, Horodam polynomials, Fekete Szegö functional

Abstract

The object of this article is to explore two subclasses of regular and bi-univalent functions subordinate to Horadam polynomials in the disk $\{\varsigma\in\mathbb{C}:|\varsigma| <1\}$. We originate upper bounds for the initial Taylor-Maclaurin coefficient estimates of functions in these subclasses. Fekete-Szeg\"o functional problem is also established. Furthermore, we present some new observations and investigate relevant connections to existing results.

Downloads

Download data is not yet available.

References

A.G. Alamoush, Coefficient estimates for certain subclass of bi-functions associated the Horadam polynomials, arXiv : 1812.10589vI [math.CV] 22 Dec 2018, 7 pp.

A. Amourah, B.A. Frasin, S.R. Swamy and Y. Sailaja, Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activation function and k-Fibonacci numbers, J. Math. Computer Sci. 27 (2022), 105-117. https://doi.org/10.22436/jmcs.027.02.02

D.A. Brannan and J.G. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute held at University of Durhary, New York : Academic Press, 1979.

D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31(2) (1986), 70-77.

E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2(1) (2013), 49-60. https://doi.org/10.7153/jca-02-05

P.L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, 1983.

S.M. El-Deeb, T. Bulboacă and B.M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative, Mathematics 8 (2020), 418. https://doi.org/10.3390/math8030418

M. Fekete and G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. Lond. Math. Soc. 89 (1933), 85-89. https://doi.org/10.1112/jlms/s1-8.2.85

B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat. 43(3) (2014), 383-389.

B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. 24 (2011), 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048

B.A. Frasin, Y. Sailaja, S.R. Swamy and A.K. Wanas, Coefficients bounds for a family of bi-univalent functions defined by Horadam polynomials, Acta et Commentationes Universitatis Tartuensis de Mathematica 26(1) (2022), 25-32. https://doi.org/10.12697/ACUTM.2022.26.02

B.A. Frasin, S.R. Swamy and A. Aldawish, A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers, J. Funct. Spaces, 2021, Article ID 4249509, 8 pp. https://doi.org/10.1155/2021/4249509

T. Hörçum and E.G. Koçer, On some properties of Horadam polynomials. Int. Math. Forum 4 (2009), 1243-1252.

A.F. Horadam and J.M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart. 23 (1985), 7-20 .

B. Khan, H.M. Srivastava, M. Tahir, M. Darus, Q.Z. Ahmed and N. Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Mathematics 6(1) (2020), 1024-1039.

M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1

N. Magesh, J. Yamini and C. Abhirami, Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, arXiv : 1812.04464vi [math.cv] 11 Dec. 2018, 14 pp.

A.K. Mishra and M.M. Soren, Coefficient bounds for bi-starlike analytic functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 157-167. https://doi.org/10.36045/bbms/1394544301

H. Orhan, P.K. Mamatha, S.R. Swamy, N. Magesh and J. Yamini, Certain classes of bi-univalent functions associated with the Horadam polynomials, Acta Univ. Sapientiae, Mathematica 13(1) (2021), 258-272. https://doi.org/10.2478/ausm-2021-0015

A.O. Páll-Szabó and G.I. Oros, Coefficient related studies for new classes of bi-univalent functions, Mathematics 8 (2020), 1110, 13 pp. https://doi.org/10.3390/math8071110

A.E. Shammaky, B.A. Frasin and S.R. Swamy, Fekete-Szegö inequality for bi-univalent functions subordinate to Horadam polynomials, J. Funct. Spaces, 2022, Article ID 9422945, 7 pages. https://doi.org/10.1155/2022/9422945

H.M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran J. Sci. Technol. Trans. A Sci. 44 (2020), 327-344. https://doi.org/10.1007/s40995-019-00815-0

H.M. Srivastava, Ş. Altınkaya and S. Yalçın, Certain Subclasses of bi-univalent functions associated with the Horadam polynomials, Iran J. Sci. Technol. Trans. Sci. 43 (2019), 1873-1879. https://doi.org/10.1007/s40995-018-0647-0

H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009

H.M. Srivastava, A.K. Wanas and R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a family of bi-univalent functions associated with Horadam polynomials, Symmetry 13(7) (2021), 1230. https://doi.org/10.3390/sym13071230

S.R. Swamy, Coefficient bounds for Al-Oboudi type bi-univalent functions based on a modified sigmoid activation function and Horadam polynimials, Earthline J. Math. Sci. 7(2) (2021), 251-270. https://doi.org/10.34198/ejms.7221.251270

S.R. Swamy, J. Nirmala and Y. Sailaja, Some special families of holomorphic and Al-Oboudi type bi-univalent functions associated with (m, n)-Lucas polynomials involving modified sigmoid activation function, South East Asian J. of Mathematics and Mathematical Sciences 17(1) (2021), 01-16.

S.R. Swamy and Y. Sailaja, Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions, Inter. J. Math. Trends and Tech. 66(8) (2020), 131-138. https://doi.org/10.14445/22315373/IJMTT-V6618P514

S.R. Swamy and A.K. Wanas, A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials, Bol. Soc. Mat. Mex. 28 (2022), Article number : 34, 10 pp. https://doi.org/10.1007/s40590-022-00411-0

S.R. Swamy and S. Yalçın, Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials, Prbl. Anal. Issues Anal. 11(1) (2022), 133-144. https://doi.org/10.15393/j3.art.2022.10351

D.L. Tan, Coefficient estimates for bi-univalent functions, Chin. Ann. Math. Ser. A 5 (1984), 559-568.

H. Tang, G. Deng and S. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl., 2013, Article no. 317, 10 pp. https://doi.org/10.1186/1029-242X-2013-317

A.K. Wanas, S.R. Swamy, H. Tang, T.G. Shaba, J. Nirmala and I.O. Ibrahim, A comprehensive family of bi-univalent functions linked with Gegenbauer polynomials, Turkish Journal of Inequalities 5(2) (2021), 61-69.

A.K. Wanas and A.A. Lupas, Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions, J. Phys.: Conf. Ser. 1294 (2019), 032003. https://doi.org/10.1088/1742-6596/1294/3/032003

Published
2022-10-12
How to Cite
Swamy, S. R. (2022). Bi-univalent Function Subclasses Subordinate to Horadam Polynomials. Earthline Journal of Mathematical Sciences, 11(2), 183-198. https://doi.org/10.34198/ejms.11223.183198
Section
Articles