Some Spectrum Estimates of the αq-Cesàro Matrices with 0 < α, q < 1 on c
Abstract
$q$-Calculus Theory is rapidly growing in various directions. The goal of this paper is to collect and underline recent results on $\alpha q$-analogs of the Cesàro matrix andemphasize various generalizations. One $\alpha q$-analogs of the Cesàro matrix of order one is the triangular matrix with nonzero entries $c_{nk}^{\alpha }\left( q\right) =\tfrac{\left( \alpha q\right) ^{n-k}}{1+q+\cdots +q^{n}},\ 0\leq k\leq n$, where $\alpha ,q\in \left( 0,1\right) $. The purpose of this article examines various spectral decompositions of $C_{q}^{\alpha }=\left( c_{nk}^{\alpha }\left( q\right) \right) $ such as the spectrum, the fine spectrum, the approximate point spectrum, the defect spectrum, and the compression spectrum on the sequence space $c$.
References
A. M. Akhmedov and S. R. El-Shabrawy, Spectra and fine spectra of lower triangular double-band matrices as operators on $ell _{p}$ $(1 leq p < infty )$, Math. Slovaca 65(5) (2015), 1137-1152. https://doi.org/10.1515/ms-2015-0078
H. Aktuğlu and Ş. Bekar, q-Cesáro matrix and q-statistical convergence, J. Comput. Anal. Appl. 235(16) (2011), 4717-4723. https://doi.org/10.1016/j.cam.2010.08.018
R. Kh. Amirov, N. Durna and M. Yildirim, Subdivisions of the spectra for Cesáro, Rhaly and weighted mean operators on $c_{0}$, $c$ and $ell _{p}$, IJST 35(A3) (2011), 175-183.
J. Appell, E. De Pascale and A. Vignoli, Nonlinear Spectral Theory, Berlin, New York, Walter de Gruyter, 2004.
F. Başar, N. Durna and M. Yildirim, Subdivisions of the spectra for generalized difference operator $Delta _{v}$ on the sequence space $ell ^{1}$, AIP Conference Proceedings 1309 (2010), 254-260. https://doi.org/10.1063/1.3525122
F. Başar, N. Durna and M. Yildirim, Subdivisions of the spectra for the triple band matrix over certain sequence spaces, Gen. Math. Notes 4(1) (2011), 35-48.
F. Başar, N. Durna and M. Yildirim, Subdivisions of the spectra for genarilized difference operator over certain sequence spaces, Thai J. Math. 9(1) (2011), 285-295.
F. Başar, N. Durna and M. Yildirim, Subdivision of the spectra for difference operator over certain sequence space, Malays. J. Math. Sci. 6 (2012), 151-165.
S. Bekar, q-Matrix Summability Methods, Ph.D. Dissertation, Eastern Mediterranean University 2010.
N. Durna and M. Yildirim, Subdivision of the spectra for factorable matrices on $c$ and $ell ^{p}$, Mathematical Communications 16(2) (2011), 519-530.
N. Durna and M. Yildirim, Subdivision of the spectra for factorable matrices on $c_{0}$, Gazi University Journal of Science 24(1) (2011), 45-49.
N. Durna, M. Yildirim and Ç. Ünal, On the fine spectrum of generalized lower triangular double band matrices $Delta _{uv}$ over the sequence space $c_{0}$, Cumhuriyet Sci. J. 37(3) (2016), 281-291. https://doi.org/10.17776/csj.03831
N. Durna, Subdivision of the spectra for the generalized upper triangular double-band matrices $Delta ^{uv}$ over the sequence spaces $c$ and $c$, ADYUSCI 6(1) (2016), 31-43.
N. Durna, Subdivision of the spectra for the generalized difference operator $Delta _{a,b}$ on the sequence space $ell _{p}$ $ left( 1 < p < infty right) $, CBU J. Sci. 13(2) (2017), 359-364.
N. Durna, M. Yildirim, R. Kılıç, Partition of the spectra for the generalized difference operator B(r, s) on the sequence space cs, Cumhuriyet Sci. J. 39(1) (2018), 7-15. https://doi.org/10.17776/csj.369069
N. Durna, Subdivision of spectra for some lower triangular doule-band matrices as operators on $c_{0}$, Ukr. Mat. Zh. 70(7) (2018), 913-922. https://doi.org/10.1007/s11253-018-1551-7
N. Durna and M. E. Türkay, The spectrum of q-Cesáro matrices on c and Its various spectral decomposition for 0 < q < 1, Oper. Matrices 15(3) (2021), 795-813. https://doi.org/10.7153/oam-2021-15-55
E. Dündar and F. Başar, On the fine spectrum of the upper triangle double band matrix $Delta ^{+}$ on the sequence space $c_{0}$, Math. Commun. 18(2) (2013), 337-348.
S. R. El-Shabrawy, Spectra and fine spectra of certain lower triangular double-band matrices as operators on $c_{0}$, J. Inequal. Appl. 2014(1) (2014), 1-9. https://doi.org/10.1186/1029-242X-2014-241
S. R. El-Shabrawy and S. H. Abu-Janah, Spectra of the generalized difference operator on the sequence spaces $bv_{0}$ and $h$, Linear and Multilinear Algebra 66(8) (2018), 1691-1708. https://doi.org/10.1080/03081087.2017.1369492
S. R. El-Shabrawy, On q-Cesáro operators : boundness, compactness and spectra, Numer. Funct. Anal. Optim. 42(9) (2021), 1019-1037. https://doi.org/10.1080/01630563.2021.1933027
J. Fathi and L. Rahmatollah, On the fine spectra of the generalized difference operator $Delta _{uv}$ over the sequence space $ell _{p}$, JMMRC 1(1) (2012), 1-12.
H. Furkan, H. Bilgiç and F. Başar, On the fine spectrum of the operator $B(r,s,t)$ over the sequence spaces $ell _{p}$ and $bv_{p}$, ($1 < p < infty $), Comput. Math. Appl. 60(7) (2010), 2141-2152.
S. Goldberg, Unbounded Linear Operators, McGraw Hill, New York, 1966.
M. Gonzalez, The fine spectrum of Ces'{a}ro operator in $ell _{p}$ $(1 < p < infty )$, Arch. Math. 44 (1985), 355-358. https://doi.org/10.1007/BF01235779
V. Karakaya and M. Altun, Fine spectra of upper triangular double-band matrices, J. Comput. Appl. Math. 234 (2010), 1387-1394. https://doi.org/10.1016/j.cam.2010.02.014
V. Karakaya, M. D. Manafov and N. Şimşek, On the fine spectrum of the second order difference operator over the sequence spaces $ell _{p}$ and bvp, ($1 < p < infty $), Math. Comput. Modelling 55(3-4) (2012), 426-431. https://doi.org/10.1016/j.mcm.2011.08.021
V. Karakaya and M. D. Manafov and N. Şimşek, On fine spectra and subspectrum (approximate point, defect and compression) of operator with periodic coefficients, Journal of Nonlinear and Convex Analysis 18(4) (2017), 709-717.
I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, 1970.
M. Mursaleen, M. Yildirim and N. Durna, On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices, Commun. Fac. Sci. Univ. Ank. Series A1 68(1) (2019), 712-723. https://doi.org/10.31801/cfsuasmas.464177
E. Kreyszing, Introductory Functional Analysis with Applications, John Wiley & Sons Inc., New York Chichester Brisbane Toronto, 1978.
B. E. Rhoades and M. Yildirim, Spectra and fine spectra for factorable matrices, Integral Equations Operator Theory 53(1) (2005), 127-144. https://doi.org/10.1007/s00020-003-1296-y
B. E. Rhoades, The fine spectra for weighted mean operators in $B(l^p)$, Integral Equations Operator Theory 12(1) (1989), 82-98. https://doi.org/10.1007/BF01199758
M. E. Türkay, Some spectrum estimates of the $alpha q$-Cesáro matrices with $0 < alpha ,q < 1$ on $c_{0}$, Konuralp J. Math. (2022) (Accepted)
B. C. Tripathy and R. Das, Fine spectrum of the upper triangular matrix U(r,0,0,s) over the sequence spaces $c_{mathbf{0}}$ and $c $, Proyecciones 37(1) (2018), 85-101. https://doi.org/10.4067/S0716-09172018000100085
M. E. Yildirim, The spectrum and fine spectrum of q-Cesáro matrices with 0 < q < 1 on $c_{0}$, Numerical Functional Analysis and Optimization 41(3) (2020), 361-377. https://doi.org/10.1080/01630563.2019.1633666
M. Yildirim, The spectrum and fine spectrum of the compact Rhaly operator, Indian J. Pure Appl. Math. 27(8) (1996), 779-784.
M. Yildirim, The spectrum of Rhaly operator on $ell _{p}$, Indian J. Pure Appl. Math. 32(2) (2001), 191-198.
M. Yildirim and N. Durna, The spectrum and some subdivisions of the spectrum of discrete generalized Cesáro operators on $ell _{p}$, ($1 < p < infty $), J. Inequal. Appl. 193 (2017), 1-13. https://doi.org/10.1186/s13660-017-1464-2
M. Yildirim, M. Mursaleen and Ç. Doğan, The spectrum and fine spectrum of generalized Rhaly-Cesáro matrices on $c_{0}$ and c, Oper. Matrices 12(4) (2018), 955-975. https://doi.org/10.7153/oam-2018-12-58
R. B. Wenger, The fine spectra of the Hölder summability operator, Indian J. Pure Appl. Math. 6(6) (1975), 695-712.
A. Wilansky, Summability Through Functional Analysis, North Holland, 1984.
This work is licensed under a Creative Commons Attribution 4.0 International License.