Certain Subclasses of Univalent Functions Linked with q-Chebyshev Polynomial
Abstract
The solutions provided in this work address the classic but still relevant topic of establishing new classes of univalent functions linked to $q$-Chebyshev polynomials and examining coefficient estimates features. Aspects of quantum calculus are also considered in this research to make it more unique and produce more pleasing outcomes. We introduce new classes of univalent functions connected to $q$-Chebyshev polynomials, which generalize certain previously investigated classes. The link among the previously published findings and the current ones are noted. For each of the new classes, estimates for the Taylor-Maclaurin coefficients $|r_2|$ and $|r_3|$ are derived and the much-studied Fekete-Szegö functional.
References
F.H. Jackson, On q-definite integrals, Q. J. Pure Appl. Math. 41 (1910), 193-203.
F.H. Jackson, In q-functions and certain difference operator, Trans. R. Soc. Edinb. 46 (1908), 253-281. https://doi.org/10.1017/S0080456800002751
H. Aldweby and M. Darus, A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, ISRN Math. Anal. 2013 (2013), Article ID 382312, 6 pp. https://doi.org/10.1155/2013/382312
M. Aydagan, Y. Kahramaner and Y. Polatoglu, Close-to-convex functions defined by fractional operator, Appl. Math. Sci. 7(56) (2013), 2769-2775. https://doi.org/10.12988/ams.2013.13246
A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik 65 (2013), 454-465.
G. Murugusundaramoorthy and T. Janani, Meromorphic parabolic starlike functions associated with q-hypergeometric series, ISRN Math. Anal. 2014 (2014), Article ID 923607, 9 pp. https://doi.org/10.1155/2014/923607
G. Murugusundaramoorthy and T. Janani, Meromorphic parabolic starlike functions associated with q-hypergeometric series, ISRN Math. Anal. 2014 (2014), Article ID 923607, 9 pp. https://doi.org/10.1155/2014/923607
Y. Polatoglu, Growth and distortion theorems for generalized q-starlike functions, Adv. Math.: Sci. J. 5 (2016), 7-12.
S. D. Purohit and R. K. Raina, Certain subclass of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), 55-70. https://doi.org/10.7146/math.scand.a-15177
S. D. Purohit and R. K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica (Cluj) 55(78) (2013), 62-74.
H. E. Ozkan Ucar, Coefficient inequalities for q-starlike functions, Appl. Math. Comput. 276 (2016), 122-126. https://doi.org/10.1016/j.amc.2015.12.008
K. A. Selvakumaran, S. D. Purohit, A. Secer and M. Bayram, Convexity of certain q-integral operators of p-valent functions, Abstr. Appl. Anal. 2014 (2014), Article ID 925902, 7 pp. https://doi.org/10.1155/2014/925902
S. Altinkaya and S. Yalcin, On the Chebyshev coefficients for a general subclass of univalent functions, Turk. J. Math. 42 (2018), 2885-2890. https://doi.org/10.3906/mat-1510-53
S. Altınkaya and S. Yalçın, On the Chebyshev polynomial bounds for classes of univalent functions, Khayyam J. Math. 2 (2016), 1-5.
S. Altınkaya and S. Yalçın, Chebyshev polynomial bounds for a certain subclass of univalent functions defined by Komatu integral operator, Afrika Matematika 30 (2019), 563-570. https://doi.org/10.1007/s13370-019-00666-3
E. Szatmari and Ş. Altinkaya, Coefficient estimates and Fekete-Szegö inequality for a class of analytic functions satisfying subordinate condition associated with Chebyshev polynomials, Acta Universitatis Sapientiae, Mathematica 11(2) (2019), 430-436. https://doi.org/10.2478/ausm-2019-0031
M. Kamali, M. Çağlar, E. Deniz and M. Turabaev, Fekete-Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials, Turk. J. Math. 45 (2021), 1195-1208. https://doi.org/10.3906/mat-2101-20
C. Ramachandran, Soupramanien and L. Vanitha, Estimation of coefficient bounds for the subclasses of analytic functions associated with Chebyshev polynomial, J. Math. Comput. Sci. 11(3) (2021), 3232-3243.
G. Koride, B.S. Rayaprolu and H.P. Maroju, Estimation of coefficient bounds for a subclass of analytic functions using Chebyshev polynomials, AIP Conference Proceedings (2019), 1-19.
A. B. Patil and T. G. Shaba, On sharp Chebyshev polynomial bounds for a general subclass of bi-univalent functions, Applied Sciences (2021), 109-117.
W.A. Al-Salam and M.E.H. Ismail, Orthogonal polynomials associated with the Rogers-Ramanujan continued fraction, Pac. J. Math. 104 (1983), 269-283. https://doi.org/10.2140/pjm.1983.104.269
J. Cigler, A simple approach to q-Chebyshev polynomial. arXiv 2012, arXiv : 1201.4703.
B. Khan, Z.G. Liu, T.G. Shaba, S. Araci, N. Khan and M.G. Khan, Applications of-Derivative Operator to the Subclass of Bi-Univalent Functions Involving q-Chebyshev Polynomials, Journal of Function Space (2022), Article ID 8162182.
I. Al-Shbeil, T.G. Shaba and A. Catas, Second Hankel determinant for the subclass of bi-Univalent functions using q-Chebyshev polynomial and Hohlov operator, Fractal and Fractional 6(1) (2022). https://doi.org/10.3390/fractalfract6040186
K.O. Babalola, On some starlike mappings involving certain convolution operators, Mathematica, Tome, 51(74) (2009), 111-118.
M. Fekete and G. Szegö, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc. 1-8(2) (1933), 85-89. https://doi.org/10.1112/jlms/s1-8.2.85
N. Magesh and J. Yamini, Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions, Preprint 2015. arXiv : 1508.07462v2
H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some classes of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10 (2016), 1063-1092. https://doi.org/10.7153/jmi-10-85
H. Orhan, T. G. Shaba and M. Caglar, (P, Q)-Lucas polynomial coefficient relations of bi-univalent functions defined by the combination of Opoola and Babalola differential operators, Afrika Matematika 33 (2022), 89. https://doi.org/10.1007/s13370-021-00953-y
C. Zhang, B. Khan, T.G. Shaba, J.-S. Ro, S. Araci and M.G. Khan, Applications of q-Hermite polynomials to subclasses of analytic and bi-univalent functions, Fractal and Fractional 6 (2022), 420. https://doi.org/10.3390/fractalfract6080420
Q. Hu, T.G. Shaba, J. Younis, B. Khan, W. K. Mashwani and M. Caglar, Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomial, Applied Mathematics in Science and Engineering 30(1) (2022), 501-520. https://doi.org/10.1080/27690911.2022.2088743
T. G. Shaba, Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator, Turkish Journal of Inequalities 4(2) (2020), 50-58.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
This work is licensed under a Creative Commons Attribution 4.0 International License.