Subgroups Inclusions in 3-Factors Direct Product

  • Brice Réné Amougou Mbarga Laboratory of Algebra, Geometry and Application, University of Yaoundé I, P.O.Box : 812, Yaoundé, Cameroon
Keywords: 3-factor, Goursat lemma, order, injective


The aim of this paper is to use a correspondent theorem   to characterize  containment of a degenerate $2$-factor injective subdirect products. Namely, let $\Omega,\Lambda$ be degenerate 2-factor injective subdirect products of $ M_{1}\times M_{2}\times M_{3}$, we provide necessary and sufficient conditions for $\Omega\leq \Lambda.$ Based on a decomposition of the inclusion order on the subgroup lattice of a subdirect product as a relation product of three smaller partial orders, we induce a matrix product of three incidence matrices.


B.R. Amougou Mbarga, Some remarks on Goursat lemma, Algebraic Structures and Their Applications 8(2) (2021), 119-129.

B.R. Amougou Mbarga, Triangular scheme revisited in the light of n-permutable categories, Earthline Journal of Mathematical Sciences 6(1) (2021), 105-116.

B.R. Amougou Mbarga, Anticommutativity and n-schemes, Earthline Journal of Mathematical Sciences 6(1) (2021), 175-186.

D.D. Anderson and V. Camillo, Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat’s lemma, Rings, modules and representations, 1-12, Contemp. Math., 480, Amer. Math. Soc., Providence, RI, 2009.

Brendan Masterson and G. Pfeiffer, On the table of marks of a direct product of finite groups, Journal of Algebra 499 (2018), 610-644.

Brendan Masterson and G. Pfeiffer, On the Table of Marks of a Direct Product of Finite Groups, PhD, 2016.

A. Carboni, J. Lambek and M.C. Pedicchio, Diagram chasing in Mal’cev categories, Journal of Pure and Applied Algebra 69 (1991), 271-284.

Daniel Neuen and P. Schweitzer, Subgroups of 3-factor direct products, Tatra Mountains Mathematical Publications 73 (2019), 19-38.

R.M. Foote and David S. Dummit, Abstract Algebra, 2nd Edition, Wiley-India, Daryaganj, New Delhi, 1999.

M. Gran and D. Rodelo, A new characterisation of Goursat categories, Appl. Categor. Struct. 20 (2012), 229-238.

M. Gran and D. Rodelo, Beck-Chevalley condition and Goursat categories, Journal of Pure and Applied Algebra 221 (2017), 2445-2457.

E. Goursat, Sur les substitutions orthogonales et les divisions régulières de l’espace, Ann. Sci. École Norm. Sup. (3) 6 (1889), 9-102.

J. Lambek, Goursat’s theorem and the Zassenhaus lemma, Canad. J. Math. 10 (1958), 45-56.

J. Lambek, On the ubiquity of Malâcev operations, Contemp. Math. 131 (1992), 135-146.

S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, MA, 1966.

D. Lewis, Containment of Subgroups in a Direct Product of Groups, Doctoral Dissertation, Binghamton University, 2011.

O. Oluwafunmilayo and M. EniOluwafe, On counting subgroups for a class of finite nonabelian p-groups and related problems, IMHOTEP - Math. Proc. 4 (2017), 34-43.

D. Sen, K. Bauer and P. Zvengrowski, A generalized Goursat lemma, Tatra Mt. Math. Publ. 64 (2015), 1-19.

J.J. O’Connor and E.F. Robertson, Edouard Jean-Baptiste Goursat, MacTutor, 2006.

J.J. Rotman, An Introduction to the Theory of Groups, 4th ed., Graduate Texts in Mathematics, Vol. 148, Springer-Verlag, New York, 1995.

L. Tóth, Subgroups of finite abelian groups having rank two via Goursat’s lemma, Tatra Mt. Math. Publ. 59 (2014), 93-103.

M. Tărnăuceanu, Counting subgroups for a class of fnite nonabelian p-groups, Analele Universitaătii de Vest din Timisoara. Seria Matematică-informatică XLVI(1) (2008), 147-152.

M. Tărnăuceanu, An arithmetic method of counting the subgroups of a fnite abelian group, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53(101)(4) (2010), 373-386.

M. Tărnăuceanu, Groups Determined by Posets of Subgroups, Matrix Rom, Bucharest, 2006.

V.M. Usenko, Subgroups of semidirect products, Ukrain. Mat. Zh. 43(7-8) (1991), 1048-1055.

How to Cite
Amougou Mbarga, B. R. (2022). Subgroups Inclusions in 3-Factors Direct Product. Earthline Journal of Mathematical Sciences, 10(1), 195-209.