Hermite Polynomial and Least-Squares Technique for Solving Integro-differential Equations
Abstract
The goal of this project is to offer a new technique for solving integro-differential equations (IDEs) with mixed circumstances, which is based on the Hermite polynomial and the Least-Squares Technique (LST). Three examples will be given to demonstrate how the suggested technique works. The numerical results were utilized to demonstrate the correctness and efficiency of the existing method, and all calculations were carried out with the help of the MATLAB R2018b program.
References
F. Qi and B.-N. Guo, Some properties of the Hermite polynomials, Georgian Mathematical Journal 28 (2021), 925-935.
A. Mennouni and S. Guedjiba, A note on solving integro-differential equation with Cauchy kernel, Mathematical and Computer Modelling 52(9-10) (2010), 1634-1638. https://doi.org/10.1016/j.mcm.2010.06.028
M. Ramezani, H. Jafari, S. J. Johnston and D. Baleanu, Complex B-spline collocation method for solving weakly singular Volterra integral equations of the second kind, Miskolc Mathematical Notes 16(2) (2015), 1091-1103. http://doi.org/10.18514/MMN.2015.1469
N. S. Khan, L. Ali, R. Ali, P. Kumam and P. Thounthong, A novel algorithm for the computation of systems containing different types of integral and integro‐differential equations, Heat Transfer 50(4) (2021), 3065-3078. https://doi.org/10.1002/htj.22018
O. Tunç, On the qualitative analyses of integro-differential equations with constant time lag, Appl. Math. Inf. Sci. 14(1) (2020), 53-59. http://dx.doi.org/10.18576/amis/140107
K. Maleknejad and N. Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. 161(3) (2005), 915-922. https://doi.org/10.1016/j.amc.2003.12.075
L. M. Delves and J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985.
E. L. Ortiz and L. Samara, An operational approach to the tau method for the numerical solution of nonlinear differential equations, Computing 27 (1981), 15-25.
J. Pour-Mahmoud, M. Y. Rahimi-Ardabili and S. Shahmorad, Numerical solution of the system of Fredholm integro-differential equations by the Tau method, Appl. Math. Comput. 168 (2005), 465-478. https://doi.org/10.1016/j.amc.2004.09.026
S. M. Hosseini and S. Shahmorad, Numerical solution of a class of integro-differential equations by the Tau method with an error estimation, Appl. Math. Comput. 136(2-3) (2003), 559-570. https://doi.org/10.1016/S0096-3003(02)00081-4
M. Razzaghi and S. Yousefi, Legendre wavelets method for the nonlinear Volterra Fredholm integral equations, Math. Comput. Simul. 70(1) (2005), 1-8. https://doi.org/10.1016/j.matcom.2005.02.035.
M. E. A. El-Mikkawy and G. S. Cheon, Combinatorial and hypergeometric identities via the Legendre polynomials – A computational approach, Appl. Math. Comput. 166(1) (2005), 181-195. https://doi.org/10.1016/j.amc.2004.04.066
H. R. Marzban and M. Razzaghi, Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials, J. Franklin Inst. 341(3) (2004), 279-293. https://doi.org/10.1016/j.jfranklin.2003.12.011
K. Maleknejad and M. Tavassoli Kajani, Solving second kind integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions, Appl. Math. Comput. 145(2-3) (2003), 623-629. https://doi.org/10.1016/S0096-3003(03)00139-5
W. N. Everitt, L. L. Litlejohn and R. Wellman, Legendre polynomials, Legendre–Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression, J. Comput. Appl. Math. 148(1) (2002), 213-238. https://doi.org/10.1016/S0377-0427(02)00582-4
M. R. Spiegel, Theory and Problems of Fourier Analysis, Schaum’s Outline Series, McGraw-Hill Inc., New York, 1994.
A. M. Wazwaz, Linear and Nonlinear Integral Equations Methods and Applications, Heidelberg and Springer, Peking and Berlin, 2011.
Hameeda Oda Al-Humedi and Ahsan Fayez Shoushan, A combination of the orthogonalpolynomials with least-squares method for solving high-orders Fredholm-Volterra integro-differential Equations, Al-Qadisiyah Journal of Pure Science 26(1) (2021), 20-38. https://doi.org/10.29350/qjps.2021.26.1.1207.
Hameeda Oda Al-Humedi and Ahsan Fayez Shoushan, Numerical solutions of mixed integro-differential equations by Least-Squares method and Laguerre polynomial, Earthline Journal of Mathematical Sciences 6(2) (2021), 309-323. https://doi.org/10.34198/ejms.6221.309323
D. A. Maturi and E. A. M. Simbawa, The modified decomposition method for solving Volterra Fredholm integro-differential equations using Maple, International Journal of GEOMATE 18(67) (2020), 84-89. https://doi.org/10.21660/2020.67.5780
B. M. Pandya and D. C. Joshi, A Cubic Legendre spline collocation method to solve Volterra-Fredholm integro differential equation, International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 2143-2146. https://doi.org/10.1109/ICEEOT.2016.7755069
This work is licensed under a Creative Commons Attribution 4.0 International License.