Some Approximate Schemes for Solving Nonlinear Equations

  • Muqadssa Shahzadi Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
Keywords: homotopy perturbation method, nonlinear equations, Halley methods, Householder method, Newtons method

Abstract

Some iterative algorithms for solving nonlinear equation $f(x) = 0$ are suggested and investigated using Taylor series and homotopy perturbation technique. These algorithms can be viewed as extensions and generalization of well known methods such as Householder and Halley methods with cubic convergence. Convergence of the proposed methods has been discussed and analyzed. Several numerical examples are given to illustrate the efficiency of the suggested algorithms for solving nonlinear equations. Comparison with other iterative schemes is carried out to show the validity and performance of these algorithms.

References

S. Abbasbandy, Improving Newton-Raphson method for nonlinear equation by modified decomposition method, App. Math. Comput. 145 (2003), 887-893. https://doi.org/10.1016/S0096-3003(03)00282-0

K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons, New York, USA, 1987.

E. Bobolian and J. Biazar, Solution of nonlinear equation by modified Adomain decomposition method, Appl. Math. Comput. 132 (2002), 167-172. https://doi.org/10.1016/S0096-3003(01)00184-9

R. L. Burden and J. D. Faires, Numerical Analysis, PWS Publishing Company, Boston, USA, 2001.

C. Chun, and Y. Ham, Some fourth-order modifications of Newton method, Applied Mathematics and Computation 197(2) (2008), 654-658. https://doi.org/10.1016/j.amc.2007.08.003

A. Cordero, C. Jordan and J. R. Torregrosa, One point Newton type iterative method: A unified point of view, Appl. Math. Comput. 275 (2015), 366-374. https://doi.org/10.1016/j.cam.2014.07.009

R. Escobedo, and L. L. Bonilla, Numerical method for quantum drift diffusion equation in semiconductor physics, J. Math. Chem. 40(1) (2006), 3-13. https://doi.org/10.1007/s10910-006-9122-9

J. H. He, Homotopy perturbation technique, Comp. Math. Appl. Mech. Eng. 178 (1999), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3

J. H. He, A new iterative method for solving algebraic equations, {Appl. Math. Comp. 135 (2005), 81-84. https://doi.org/10.1016/S0096-3003(01)00313-7

A. S. Householder, The Numerical Treatment of a Single Nonlinear Equations, McGraw-Hill, New York, 1970.

T. Lotfi, S. Shateyi and S. Hadadi, Potra-Ptak iterative method with memory, International Scholarly Research Notices 2014 (2014), Art. ID 697642, 6 pp. https://doi.org/10.1155/2014/697642

X. Luo, A note on the new iteration for solving algebraic equations, Appl. Math. Comput. 171 (2005), 1177-1183. https://doi.org/10.1016/j.amc.2005.01.124

M. A. Noor and K. I. Noor, Some iterative schemes for nonlinear equations, Appl. Math. Comput. 183 (2006), 774-779. https://doi.org/10.1016/j.amc.2006.05.084

K. I. Noor, M. A. Noor and S. Momani, Modified Householder iterative method for nonlinear equation, Appl. Math. Comput. 190 (2007), 1534-1539. https://doi.org/10.1016/j.amc.2007.02.036

K. I. Noor and M. A. Noor, Predictor-corrector Halley method for nonlinear equations, Appl. Math. Comput. 188 (2007), 1578-1591. https://doi.org/10.1016/j.amc.2006.11.023

M. A. Noor, New family of iterative methods for nonlinear equations, Appl. Math. Comput. 190 (2007), 553-558. https://doi.org/10.1016/j.amc.2007.01.045

M. A. Noor, Homotopy perturbation method for solving nonlinear equation, J. Math. Anal. Approx. Theory 2 (2007), 111-117.

M. A. Noor, New iterative schemes for nonlinear equitation, Appl. Math. Comput. 187 (2007), 937-943. https://doi.org/10.1016/j.amc.2006.09.028

M. A. Noor, Some iterative methods for nonlinear equation using homotopy perturbation method, Int. J. Comput. Math. 87 (2010), 141-149. https://doi.org/10.1080/00207160801969513

M. A. Noor, Iterative method for nonlinear equation using homotopy perturbation method, Appl. Math. Inform. Sci. 4 (2010), 227-2235.

M. A. Noor, Numerical Analysis and Optimization, Lecture Notes, Mathematics Department, COMSATS University Islamabad, Islamabad, Pakistan, 2008-2021.

M. A. Noor and W. A. Khan, New iterative method for solving nonlinear by using homotopy perturbation method, Appl. Math. Comput. 219 (2012), 3565-3574. https://doi.org/10.1016/j.amc.2012.09.040

M. A. Noor and F. A. Shah, Higher order iterative scheme for nonlinear equation using decomposition technique, Appl. Math. Comput. 266 (2015), 414-423. https://doi.org/10.1016/j.amc.2015.05.054

M. A. Waseem, M. A. Noor, K. I. Noor and F. A. Shah, An efficient technique to solve nonlinear equations using multiplication calculus, Turk. J. Math. 42 (2018), 679-691. https://doi.org/10.3906/mat-1611-95

Published
2022-03-04
How to Cite
Shahzadi, M. (2022). Some Approximate Schemes for Solving Nonlinear Equations. Earthline Journal of Mathematical Sciences, 9(1), 79-91. https://doi.org/10.34198/ejms.9122.7991
Section
Articles