The Fourth Fundamental Form of the Torus Hypersurface

  • Erhan Güler Department of Mathematics, Faculty of Sciences, Bartın University, 74100 Bartın, Turkey
Keywords: four space, torus hypersurface, fourth fundamental form


We introduce the fourth fundamental form of the torus hypersurface in the four dimensional Euclidean space. We also compute I, II, III and IV fundamental forms of a torus hypersurface.


Yu. Aminov, The Geometry of Submanifolds, Gordon and Breach Science Publishers, Amsterdam, 2001.

V.A. Borovitskiĭ, K-closedness for weighted Hardy spaces on the torus T2, Zap. Nauchn. Sem. (POMI) 456 (2017), 25-36 (in Russian); translation in J. Math. Sci. (N.Y.) 234(3) (2018), 282-289.

J. Dasgupta, B. Khan and V. Uma, Cohomology of torus manifold bundles, Math. Slovaca 69(3) (2019), 685-698.

C.L. Duston, Torus solutions to the Weierstrass-Enneper representation of surfaces, J. Math. Phys. 60(8) (2019), 1-5.

J. Harvey and C. Searle, Almost non-negatively curved 4-manifolds with torus symmetry, Proc. Amer. Math. Soc. 148(11) (2020), 4933-4950.

M. Hasegawa and D. Ida, Instability of stationary closed strings winding around flat torus in five-dimensional Schwarzschild spacetimes, Phys. Rev. D 98(4) (2018), 1-7.

S. Hirose and E. Kin, On hyperbolic surface bundles over the circle as branched double covers of the 3-sphere, Proc. Amer. Math. Soc. 148(4) (2020), 1805-1814.

Y. Kamiyama, The orbit space of a hypersurface of a torus by an involution, JP J. Geom. Top. 21(4) (2018), 365-372.

E. Krasko and A. Omelchenko, Enumeration of r-regular maps on the torus. Part I: rooted maps on the torus, the projective plane and the Klein bottle, Sensed maps on the torus, Discrete Math. 342(2) (2019), 584-599.

E. Krasko and A. Omelchenko, Enumeration of r-regular maps on the torus. Part II: Unsensed maps, Discrete Math. 342(2) (2019), 600-614.

L.M. Lerman and K.N. Trifonov, The topology of symplectic partially hyperbolic automorphisms of the 4-torus, Mat. Zametki 108(3) (2020), 474-476 (in Russian).

M. Mase, Families of K3 surfaces and curves of (2,3)-torus type, Kodai Math. J. 42(3) (2019), 409-430.

S. Nakamura, The orthonormal Strichartz inequality on torus, Trans. Amer. Math. Soc. 373(2) (2020), 1455-1476.

Mauricio Poletti, Geometric growth for Anosov maps on the 3 torus, Bull. Braz. Math. Soc. (N.S.) 49(4) (2018), 699-713.

T. Sakajo, Vortex crystals on the surface of a torus, Philos. Trans. Roy. Soc. A 377(2158) (2019), 1-17.

How to Cite
Güler, E. (2020). The Fourth Fundamental Form of the Torus Hypersurface. Earthline Journal of Mathematical Sciences, 4(2), 425-431.