Bernoulli Wavelets Operational Matrices Method for the Solution of Nonlinear Stochastic Itô-Volterra Integral Equations

  • S. C. Shiralashetti Department of Mathematics, Karnatak University, Dharwad, India
  • Lata Lamani Department of Mathematics, Karnatak University, Dharwad, India
Keywords: nonlinear stochastic Itô-Volterra integral equations, Bernoulli wavelets, Bernoulli polynomials, Brownian motion

Abstract

This article gives an effective strategy to solve nonlinear stochastic Itô-Volterra integral equations (NSIVIE). These equations can be reduced to a system of nonlinear algebraic equations with unknown coefficients, using Bernoulli wavelets, their operational matrix of integration (OMI), stochastic operational matrix of integration (SOMI) and these equations can be solved numerically. Error analysis of the proposed method is given. Moreover, the results obtained are compared to exact solutions with numerical examples to show that the method described is accurate and precise.

References

M. Khodabin, K. Maleknejad, M. Rostami and M. Nouri, Numerical approach for solving stochastic Volterra-Fredholm integral equations by stochastic operational matrix, Comput. Math. Appl. 64(6) (2012), 1903-1913. https://doi.org/10.1016/j.camwa.2012.03.042

M.H. Heydari, M.R. Hooshandasl, F.M. Maalek Ghaini and C. Cattani, A computational method for solving stochastic Itô-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys. 270(1) (2014), 402-415. https://doi.org/10.1016/j.jcp.2014.03.064

M.H. Heydari, C. Cattani, M.R. Hooshandasl and F.M. Maalek Ghaini, An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics, J. Comput. Phys. 283 (2015), 148-168. https://doi.org/10.1016/j.jcp.2014.11.042

F. Mohammadi, A wavelet-based computational method for solving stochastic Itô-Volterra integral equations, J. Comput. Phys. 298(1) (2015), 254-265. https://doi.org/10.1016/j.jcp.2015.05.051

K. Maleknejad, M. Khodabin and M. Rostami, Numerical solutions of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions, Math. Comput. Modell. 55(3-4) (2012), 791-800. https://doi.org/10.1016/j.mcm.2011.08.053

K. Maleknejad, M. Khodabin and M. Rostami, A numerical method for solving m-dimensional stochastic Itô-Volterra integral equations by stochastic operational matrix, Comput. Math. Appl. 63(1) (2012), 133-143.

Y. Cao, D. Gillespie and L. Petzod, Adaptive explicit-implicit tau-leaping method with automatic tau selection, J. Chem. Phys. 126(22) (2007), 1-9. https://doi.org/10.1063/1.2745299

E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-13694-8

M.H. Heydari, M.R. Hooshmandasl, A. Shakiba and C. Cattani, Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations, Nonlinear Dyn. 85(2) (2016), 1185-1202. https://doi.org/10.1007/s11071-016-2753-x

M. Khodabin, K. Malekinejad, M. Rostami and M. Nouri, Numerical solution of stochastic differential equations by second order Runge-Kutta methods, Appl. Math. Modell. 53 (2011), 1910-1920. https://doi.org/10.1016/j.mcm.2011.01.018

P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1999.

J.C. Cortes, L. Jodar and L. Villafuerte, Numerical solution of random differential equations: a mean square approach, Math. Comput. Modell. 45(7-8) (2007), 757-765. https://doi.org/10.1016/j.mcm.2006.07.017

B. Oksendal, Stochastic differential equations, 5th ed., in: An Introduction with Applications, Springer, New York, 1998. https://doi.org/10.1007/978-3-662-03620-4_5

H. Holden, B. Oksendal, J. Uboe and T. Zhang, Stochastic Partial Differential Equations, 2nd ed., Springer, New York, 1998.

A. Abdulle and A. Blumenthal, Stabilized multilevel Monte Carlo method for stiff stochastic differential equations, J. Comput. Phys. 251 (2013), 445-460. https://doi.org/10.1016/j.jcp.2013.05.039

M.A. Berger and V.J. Mizel, Volterra equations with Itô integrals I, J. Integral Equations 2(3) (1980), 187-245.

J.J. Levin and J.A. Nohel, On a system of integro-differential equations occurring in reactor dynamics, J. Math. Mech. 9 (1960), 347-368. https://doi.org/10.1512/iumj.1960.9.59020

M.H. Heydari, M.R. Hooshandasl, F.M. Maalek Ghaini and C. Cattani, A computational method for solving stochastic Itô-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys. 270(1) (2014), 402-415. https://doi.org/10.1016/j.jcp.2014.03.064

K. Maleknejad, M. Khodabin and M. Rostami, A numerical method for solving m-dimensional stochastic Itô-Volterra integral equations by stochastic operational matrix, Comput. Math. Appl. 63(1) (2012), 133-143.

R.L. Stratonovich, A new representation for stochastic integrals and equations, SIAM J. Control. 4(2) (1966), 362-371. https://doi.org/10.1137/0304028

F. Mirzaee and N. Samadyar, Application of operational matrices for solving system of linear Stratonovich Volterra integral equation, J. Comput. Appl. Math. 320 (2017), 164-175. https://doi.org/10.1016/j.cam.2017.02.007

F. Mirzaee and N. Samadyar, On the numerical solution of stochastic quadratic integral equations via operational matrix method, Math. Methods Appl. Sci. 41(12) (2018), 4465-4479. https://doi.org/10.1002/mma.4907

F. Mirzaee and N. Samadyar, Numerical solution of nonlinear stochastic Itô‐Volterra integral equations driven by fractional Brownian motion, Math. Methods Appl. Sci. 41(4) (2018), 1410-1423. https://doi.org/10.1002/mma.4671

Z. Taheri, S. Javadi and E. Babolian, Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method, J. Comput. Appl. Math. 321 (2017), 336-347. https://doi.org/10.1016/j.cam.2017.02.027

F. Mirzaee and N. Samadyar, Application of Bernoulli wavelet method for estimating a solution of linear stochastic Itô-Volterra integral equations, Multidiscip. Model. Mater. Struct. 15(3) (2019), 575-598. https://doi.org/10.1108/MMMS-04-2018-0075

E. Keshavarz, Y. Ordokhani and M. Razzaghi, Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Model. 38 (2014), 6038-6051. https://doi.org/10.1016/j.apm.2014.04.064

B.K. Mousavi, A. Askari Hemmat and M.H. Heydari, Wilson wavelets for solving nonlinear stochastic integral equations, Wavelets and Linear Algebra 4(2) (2017), 33-48.

Published
2020-11-10
How to Cite
Shiralashetti, S. C., & Lamani, L. (2020). Bernoulli Wavelets Operational Matrices Method for the Solution of Nonlinear Stochastic Itô-Volterra Integral Equations. Earthline Journal of Mathematical Sciences, 5(2), 395-410. https://doi.org/10.34198/ejms.5221.395410
Section
Articles