Coefficient Estimates of Certain Subclasses of Bi-Bazilevic Functions Associated with Chebyshev Polynomials and Mittag-Leffler Function

  • Adeniyi Musibau Gbolagade Department of Mathematics, Emmanuel Alayande College of Education, P. M. B. 1010, Oyo, Oyo State, Nigeria
  • Ibrahim Tunji Awolere Department of Mathematics, Olusegun Agagu University of Science and Technology, P. M. B. 353, Okitipupa, Ondo State, Nigeria
Keywords: coefficient estimates, bi-Bazilevic functions, Mittag-Leffler, polynomials


In this present investigation, the authors introduced certain subclasses of the function class $ T^{\alpha}_{\theta}(\lambda, \beta, t)$ of bi-Bazilevic univalent functions defined in the open unit disk $U$, which are associated with Chebyshev polynomials and Mittag-Leffler function. We establish the Taylor Maclaurin coefficients $\left|a_{2}\right|$, $\left|a_{3}\right|$ and $\left|a_{4}\right|$ for functions in the new subclass introduced and the Fekete-Szego problem is solved.


S. Altinkaya and S. Yalcin, Initial coefficient bounds for a general class of biunivalent functions, International Journal of Analysis 20 (2014), Article ID 867871.

S. Altinkaya and S. Yalcin, Coefficient bounds for a subclass of bi-univalent functions, TWMS Journal of Pure and Applied Mathematics 6(2) (2015), 180-185.

S. Altinkaya and S. Yalcin, Coefficient estimates for two new subclasses of biunivalent functions with respect to symmetric points, Journal of Function Spaces 2015 (2015), Article ID 145242.

S. Altinkaya and S. Yalcin, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf Journal of Mathematics 5 (2017), 34-40.

B. P. Amol and H. N. Uday, Estimate on coefficients of certain subclasses of bi-univalent functions associated with Hohlov operator, Palestine Journal of Mathematics 7(2) (2018), 487-497.

I. T. Awolere and S. Ibrahim-Tiamiyu, New subclasses of bi-univalent pseudo starlike function using Alhindi-Darus generalized hypergeometric function, Journal of the Nigerian Association of Mathematical Physics 40 (2017), 65-72.

D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canadian Journal of Mathematics 22 (1970), 476-485.

D. A. Brannan and J. Clunie (Eds.), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July, 1979), Academic Press, New York and London, 1980.

P. L. Duren, Univalent functions, Grundlehren der Math. Wiss. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

M. Fekete and G. Szego, Eine bemerkung uber ungerade schlichte funktionen, J. London Math. Soc. 8 (1933), 85-89.

B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.

M. Lewin, On the coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.

G. Mittag-Leffler, Sur la nouvelle fonction $E_{alpha}(x)$, C. R. Acad. Sci. Paris 137 (1903), 554-558.

G. Murugusundaramoorthy, Coefficient estimates of bi-Bazileviuc function of complex order based on quasi subordination involving Srivastava-Attiya operator, 2016. arXiv:1601.0229vl []

E. Netanyahu, The minimal distance of the image boundary from origin and second coefficient of a univalent function in $left|zright|<1$, Arch. Ration Mech. Anal. 32 (1969), 100-112.

F. Yousef, B. A. Frasin and Tariq Al-Hawary, Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, 2018. arXiv:1801.09531 [math.CV]

How to Cite
Gbolagade, A. M., & Awolere, I. T. (2020). Coefficient Estimates of Certain Subclasses of Bi-Bazilevic Functions Associated with Chebyshev Polynomials and Mittag-Leffler Function. Earthline Journal of Mathematical Sciences, 5(2), 365-376.