On Some Characterization of Preinvex Fuzzy Mappings
Abstract
In this paper, a new notion of generalized convex fuzzy mapping is introduced, which is called α-preinvex fuzzy mapping on the α-invex set. We have investigated the characterization of preinvex fuzzy mappings using α-preinvex fuzzy mappings, which can be viewed as a novel and innovative application. Some important and significant special cases are discussed. We have also investigated that the minimum of α-preinvex fuzzy mappings can be characterized by fuzzy α-variational like inequalities.
References
B. Bede and S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems 151(3) (2005), 581-599. https://doi.org/10.1016/j.fss.2004.08.001
A. Ben-Israel and B. Mond, What is invexity?, The ANZIAM Journal 28 (1986), 1-9. https://doi.org/10.1017/S0334270000005142
J. Cervelati, M. D. Jiménez-Gamero, F. Vilca-Labra and M. A. Rojas-Medar, Continuity for s-convex fuzzy processes, in: Soft Methodology and Random Information Systems, Advances in Soft Computing, vol. 26, Springer, Berlin, Heidelberg, 2004, pp. 653-660. https://doi.org/10.1007/978-3-540-44465-7_81
Y. Chalco-Cano, M. A. Rojas-Medar and H. Román-Flores, M-convex fuzzy mappings and fuzzy integral mean, Comput. Math. Appl. 40(10-11) (2000), 1117-1126. https://doi.org/10.1016/S0898-1221(00)00226-1
S. S. L. Chang and L. A. Zadeh, On fuzzy mapping and control, IEEE Trans. Systems Man Cybernet. 2 (1972), 30-34. https://doi.org/10.1109/TSMC.1972.5408553
X. P. Ding and J. Y. Park, A new class of generalized nonlinear implicit quasivariational inclusions with fuzzy mappings, J. Comput. Appl. Math. 138(2) (2002), 243-257. https://doi.org/10.1016/S0377-0427(01)00379-X
N. Furukawa, Convexity and local Lipschitz continuity of fuzzy-valued mappings, Fuzzy Sets and Systems 93(1) (1998), 113-119. https://doi.org/10.1016/S0165-0114(96)00192-3
R. Goetschel, Jr. and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18(1) (1986), 31-43. https://doi.org/10.1016/0165-0114(86)90026-6
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550. https://doi.org/10.1016/0022-247X(81)90123-2
V. Jeyakumar and B. Mond, On generalized convex mathematical programming, The ANZIAM Journal 34 (1992), 43-53. https://doi.org/10.1017/S0334270000007372
J. Li and M. A. Noor, On characterizations of preinvex fuzzy mappings, Comput. Math. Appl. 59(2) (2010), 933-940. https://doi.org/10.1016/j.camwa.2009.09.015
S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908. https://doi.org/10.1006/jmaa.1995.1057
S. Nanda and K. Kar, Convex fuzzy mappings, Fuzzy Sets and Systems 48(1) (1992), 129-132. https://doi.org/10.1016/0165-0114(92)90256-4
M. A. Noor, Fuzzy preinvex functions, Fuzzy Sets and Systems 64(1) (1994), 95-104. https://doi.org/10.1016/0165-0114(94)90011-6
M. A. Noor, Variational-like inequalities, Optimization 30 (1994), 323-330. https://doi.org/10.1080/02331939408843995
M. A. Noor and K. I. Noor, Some characterizations of strongly preinvex functions, J. Math. Anal. Appl. 316(2) (2006), 697-706. https://doi.org/10.1016/j.jmaa.2005.05.014
M. A. Noor, Variational inequalities for fuzzy mappings (III), Fuzzy Sets and Systems 110(1) (2000), 101-108. https://doi.org/10.1016/S0165-0114(98)00131-6
M. A. Noor, Generalized convex functions, Panamer. Math. J. 4 (1994), 73-89.
A. Rufián-Lizana, Y. Chalco-Cano, R. Osuna-Gómez and G. Ruiz-Garzón, On invex fuzzy mappings and fuzzy variational-like inequalities, Fuzzy Sets and Systems 200 (2012), 84-98. https://doi.org/10.1016/j.fss.2012.02.001
A. Rufián-Lizana, Y. Chalco-Cano, G. Ruiz-Garzón and H. Román-Flores, On some characterizations of preinvex fuzzy mappings, TOP 22(2) (2014), 771-783. https://doi.org/10.1007/s11750-013-0299-3
L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal. 71(3-4) (2009), 1311-1328. https://doi.org/10.1016/j.na.2008.12.005
Y. R. Syau, Preinvex fuzzy mappings, Comput. Math. Appl. 37(3) (1999), 31-39. https://doi.org/10.1016/S0898-1221(99)00044-9
Y. R. Syau, Invex and generalized convex fuzzy mappings, Fuzzy Sets and Systems 115(3) (2000), 455-461. https://doi.org/10.1016/S0165-0114(98)00415-1
Y. R. Syau, Generalization of preinvex and B-vex fuzzy mappings, Fuzzy Sets and Systems 120(3) (2001), 533-542. https://doi.org/10.1016/S0165-0114(99)00139-6
Y. R. Syau, (Φ1, Φ2)-convex fuzzy mappings, Fuzzy Sets and Systems 138(3) (2003) 617-625. https://doi.org/10.1016/S0165-0114(02)00527-4
Y. R. Syau and E. S. Lee, Fuzzy Weirstrass theorem and convex fuzzy mappings, Comput. Math. Appl. 51(12) (2006), 1741-1750. https://doi.org/10.1016/j.camwa.2006.02.005
Y. R. Syau, On convex and concave fuzzy mappings, Fuzzy Sets and Systems 103(1) (1999), 163-168. https://doi.org/10.1016/S0165-0114(97)00210-8
T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1988), 29-38. https://doi.org/10.1016/0022-247X(88)90113-8
Z. Wu and J. Xu, Generalized convex fuzzy mappings and fuzzy variational-like inequality, Fuzzy Sets and Systems 160(11) (2009), 1590-1619. https://doi.org/10.1016/j.fss.2008.11.031
X. Q. Yang and G. Y. Chen, A class of nonconvex functions and variational inequalities, J. Math. Anal. Appl. 169 (1992), 359-373. https://doi.org/10.1016/0022-247X(92)90084-Q
H. Yan and J. Xu, A class of convex fuzzy mappings, Fuzzy Sets and Systems 129(1) (2002), 47-56. https://doi.org/10.1016/S0165-0114(01)00157-9
This work is licensed under a Creative Commons Attribution 4.0 International License.