# Complementary Kumaraswamy Weibull Power Series Distribution: Some Properties and Application

• Innocent Boyle Eraikhuemen Department of Physical Sciences, Benson Idahosa University, Benin City, Edo State, Nigeria
• Julian Ibezimako Mbegbu Department of Statistics, University of Benin, Benin City, Edo State, Nigeria
• Friday Ewere Department of Statistics, University of Benin, Benin City, Edo State, Nigeria
Keywords: Kumaraswamy Weibull distribution, power series distribution, latent complementary risk, maximum likelihood

### Abstract

In this paper, we propose Complementary Kumaraswamy Weibull Power Series (CKWPS) Distributions. The method is obtained by compounding the Kumaraswamy-G distribution and Power Series distribution on a latent complementary distance problem base. The mathematical properties of the proposed class of distribution are studied. The method of Maximum Likelihood Estimation is used for obtaining the estimates of the model parameters. A member of the family is investigated in detail. Finally an application of the proposed class is illustrated using a real data set.

### References

N. Eugene, C. Lee and F. Famoye, Beta-normal distribution and its applications, Comm. Statist. Theory Methods 31(4) (2002), 497-512. https://doi.org/10.1081/STA-120003130

K. Adamidis and S. Loukas, A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), 35-42. https://doi.org/10.1016/S0167-7152(98)00012-1

S. Rezaei and R. Tahmasbi, A new lifetime distribution with increasing failure rate: exponential truncated Poisson, J. Basic Appl. Sci. Res. 2(2) (2012), 1749-1762.

A. S. Hassan, S. M. Assar and K. A. Ali, The complementary Poisson-Lindley class of distributions, International Journal of Advanced Statistics and Probability 3(2) (2015), 146-160. https://doi.org/10.14419/ijasp.v3i2.4624

A. L. Morais and W. Barreto-Souza, A compound class of Weibull and power series distributions, Comput. Statist. Data Anal. 55 (2011), 1410-1425. https://doi.org/10.1016/j.csda.2010.09.030

E. P. Mahmoudi and A. A. Jafari, Generalized exponentialâ€“power series distributions, Comput. Statist. Data Anal. 55 (2012), 4047-4066. https://doi.org/10.1016/j.csda.2012.04.009

R. B. Silva, M. Bourguignon, C. R. B. Dias and G. M. Cordeiro, The compound class of extended Weibull power series distributions, Comput. Statist. Data Anal. 58 (2013), 352-367. https://doi.org/10.1016/j.csda.2012.09.009

R. B. Silva and G. M. Cordeiro, The Burr XII power series distributions: A new compounding family, Braz. J. Probab. Stat. 29(3) (2015), 565-589. https://doi.org/10.1214/13-BJPS234

G. W. Liyanage and M. Pararai, The Lindley power series class of distributions: model, properties and applications, Journal of Computations and Modeling 5(3) (2015), 35-80.

G. M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul. 81(7) (2011), 883-898. https://doi.org/10.1080/00949650903530745

A. W. Marshall and I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84 (1997), 641-652. https://doi.org/10.1093/biomet/84.3.641

A. Noack, A class of random variables with discrete distributions, Ann. Math. Statist. 21 (1950), 127-132. https://doi.org/10.1214/aoms/1177729894

O. D. Kosambi, Characteristic properties of series distributions, Proc. Nat. Inst. Sci. India 15 (1949), 109-113.

G. P. Patil, Contribution to the estimation in a class of discrete distributions, Ph.D. Thesis, Ann Arbor, MI: University of Michigan, 1961.

G. P. Patil, Certain properties of the generalized power series distribution II, Ann. Inst. Statist. Math. 14 (1962), 179-182. https://doi.org/10.1007/BF02868639

R. L. Smith and J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, Appl. Statist. 36 (1987), 358-369. https://doi.org/10.2307/2347795

W. Barreto-Souza, A. I. de Morais and G. M. Cordeiro, The Weibull-geometric distributions, J. Stat. Comput. Simul. 81 (2011), 645-657. https://doi.org/10.1080/00949650903436554

M. Bourguignon, R. B. Silva and G. M. Cordero, The Weibull-G family of probability distributions, J. Data Sci. 12 (2014), 53-68.

P. E. Oguntunde, O. S. Balogun, H. I. Okagbue and S. A. Bishop, The Weibull exponential distribution: Its properties and applications, J. Appl. Sci. 15(11) (2015), 1305-1311. https://doi.org/10.3923/jas.2015.1305.1311

M. Mansour, G. Aryal, A. Z. Afify and M. Ahmad, The Kumaraswamy exponentiated FrÃ©chet distribution, Pakistan Journal of Statistics 34(3) (2018), 177-193.

T. G. Ieren and A. Yahaya, The Weimal distribution: its properties and applications, Journal of the Nigerian Association of Mathematical Physics 39 (2017), 135-148.

A. Yahaya and T. G. Ieren, On transmuted Weibull-exponential distribution: its properties and applications, Nigerian Journal of Scientific Research 16(3) (2017b), 289-297.

T. G. Ieren, S. O. Oyamakin, A. Yahaya, A. U. Chukwu, A. A. Umar and S. Kuje, On making an informed choice between two Lomax-based continuous probability distributions using lifetime data, Asian J. Prob. Stat. 2(2) (2018), 1-11. https://doi.org/10.9734/ajpas/2018/v2i228780

Published
2020-07-04
How to Cite
Eraikhuemen, I. B., Mbegbu , J. I., & Ewere , F. (2020). Complementary Kumaraswamy Weibull Power Series Distribution: Some Properties and Application. Earthline Journal of Mathematical Sciences, 4(2), 361-398. https://doi.org/10.34198/ejms.4220.361398
Issue
Section
Articles