Applications of Certain Operators to the Classes of Analytic Functions Related to the Generalized Janowski Functions

  • Khalida Inayat Noor COMSATS University, Islamabad, Pakistan
  • Shujaat Ali Shah COMSATS University, Islamabad, Pakistan and Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
Keywords: analytic functions, generalized Janowski functions, conic domains, Ruscheweyh differential operator, Noor integral operator, inclusion results, radius problems

Abstract

We introduce certain subclasses of analytic functions related to the class of analytic, convex univalent functions. We discuss some results including inclusion relationships and invariance of the classes under convex convolution in terms of certain linear operators. Applications of these results associated with the generalized Janowski functions and conic domains are considered. Also, several radius problems are investigated.

References

H.A. Al-Kharsani and A. Sofo, Subordination results on harmonic k-uniformly convex mappings and related classes, Comput. Math. Appl. 59 (2010), 3718-3726. https://doi.org/10.1016/j.camwa.2010.03.071

V.V. Anh and P.D. Tuan, On fi-convexity of certain starlike functions, Rev. Roumaine Math. Pures App. 25 (1979), 1413-1424.

S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Mat. Soc. 135 (1969), 429-446. https://doi.org/10.1090/S0002-9947-1969-0232920-2

S.H.Z. Bukhari, K.I. Noor and B. Malik, Some applications of generalized Srivastava-Attiya integral operator, Iran. J. Sci. Technol. Trans. A Sci. (First Online) (2017) 1-7.

N.E. Cho, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl. 238(2003), 202-212. https://doi.org/10.1016/S0022-247X(03)00270-1

N.E. Cho and J.A. Kim, Inclusion properties of certain subclasses of analytic functions defined by a multiplier transformation, Comput. Math. Appl. 52 (2006), 323-330. https://doi.org/10.1016/j.camwa.2006.08.022

J. Dziok and K.I. Noor, Classes of analytic functions related to a combination of two convex functions, J. Math. Inequal. 11 (2017), 413-427. https://doi.org/10.7153/jmi-2017-11-35

W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28 (1973), 297-326. https://doi.org/10.4064/ap-28-3-297-326

S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336. https://doi.org/10.1016/S0377-0427(99)00018-7

S. Kanas and A. Wisniowska, Conic domain and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647-657.

R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758. https://doi.org/10.1090/S0002-9939-1965-0178131-2

S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker, Inc., New York, Basel, 2000. https://doi.org/10.1201/9781482289817

K.I. Noor, Applications of certain operators to the classes related with generalized Janowski functions, Integral Transforms Spec. Funct. 21 (2010), 557-567. https://doi.org/10.1080/10652460903424261

K.I. Noor, On classes of analytic functions defined by convolution with incomplete beta functions, J. Math. Anal. Appl. 307 (2005), 339-349. https://doi.org/10.1016/j.jmaa.2004.10.043

K.I. Noor, On a generalization of uniformly convex and related functions, Comput. Math. Appl. 61 (2011), 117-125. https://doi.org/10.1016/j.camwa.2010.10.038

K.I. Noor, On new classes of integral operators, J. Natur. Geom. 16 (1999), 71-80.

K.I. Noor, M. Arif and W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput. 215 (2009), 629-635. https://doi.org/10.1016/j.amc.2009.05.050

K.I. Noor and M.A. Noor, On certain classes of analytic functions defined by Noor integral operator, J. Math. Anal. Appl. 281 (2003), 244-252. https://doi.org/10.1016/S0022-247X(03)00094-5

K.I. Noor and M.A. Noor, On integral operators, J. Math. Anal. Appl. 238 (1999), 341-352. https://doi.org/10.1006/jmaa.1999.6501

K.I. Noor and S.Riaz, Application of Carlson Shaer operator in univalent function theory, Acta Univ. Apulensis Math. Inform. 44 (2015), 175-188.

H. Orhan, E. Deniz and D. Raducanu, The Feketo-Szego problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (2010), 283-295. https://doi.org/10.1016/j.camwa.2009.07.049

B. Pinchuk, Functions with bounded boundary rotation, Israel J. Math. 10 (1971), 6-16. https://doi.org/10.1007/BF02771515

Y. Polatoglu, M. Bolcal, A. Sen and E. Yavuz, A study on the generalization of Janowski functions in the unit disc, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 22 (2006), 27-31.

S. Ruscheweyh, New criteria for univalent functions. Proc. Amer. Math. Soc. 49 (1975), 109-115. https://doi.org/10.1090/S0002-9939-1975-0367176-1

S. Ruscheweyh and T. Sheil-Small, Hadamard product of Schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135. https://doi.org/10.1007/BF02566116

S. Ruscheweyh and V. Singh, On certain extremal problems for functions with positive real part, Proc. Amer. Math. Soc. 61 (1976), 329-334. https://doi.org/10.1090/10.2307/2041336

N. Xu and D. Yang, A class of analytic functions defined by Carlson-Shaer operator, Bull. Inst. Math. Acad. Sin. (N.S.) 2 (2007), 91-102.

Published
2020-05-24
How to Cite
Noor, K. I., & Shah, S. A. (2020). Applications of Certain Operators to the Classes of Analytic Functions Related to the Generalized Janowski Functions. Earthline Journal of Mathematical Sciences, 4(2), 211-225. https://doi.org/10.34198/ejms.4220.211225
Section
Articles