On Commutators of Fuzzy Multigroups

  • P. A. Ejegwa Department of Mathematics/Statistics/Computer Science, University of Agriculture, P.M.B. 2373, Makurdi, Nigeria
  • J. M. Agbetayo Department of Mathematics/Statistics/Computer Science, University of Agriculture, P.M.B. 2373, Makurdi, Nigeria
Keywords: commutator, fuzzy multiset, fuzzy multigroup, fuzzy submultigroup


Fuzzy multigroup is an application of fuzzy multiset to group theory. Although, a lots have been done on the theory of fuzzy multigroups, some group's theoretic notions could still be investigated in fuzzy multigroup context. Certainly, the idea of commutator is one of such group's theoretic notions yet to be studied in the environment of fuzzy multigroups. Hence, the aim of this article is to establish the notion of commutator in fuzzy multigroup setting. A number of some related results are obtained and characterized. Among several results that are obtained,  it is established that, if $A$ and $B$ are fuzzy submultigroups of a fuzzy multigroup $C$, then  $[A, B]\subseteq A\cup B$ holds. Some homomorphic properties of commutator in fuzzy multigroup context are   discussed. The notion of admissible fuzzy submultisets $A$ and $B$ of $C\in FMG(X)$  under an operator domain $\mathcal{D}$ is explicated,  and it is shown that $(A,B)$ and $[A,B]$ are $\mathcal{D}$-admissible.


N. Ajmal and A. S. Prajapati, Fuzzy cosets and fuzzy normal subgroups, Inform. Sci. 64 (1992), 17-25. https://doi.org/10.1016/0020-0255(92)90107-J

A. Baby, T. K. Shinoj and J. J. Sunil, On abelian fuzzy multigroups and order of fuzzy multigroups, J. New Theory 5(2) (2015), 80-93.

R. Biswas, An application of Yager’s bag theory in multicriteria based decision making problems, Int. J. Intell. Syst. 14 (1999), 1231-1238. https://doi.org/10.1002/(SICI)1098-111X(199912)14:12%3C1231::AID-INT4%3E3.0.CO;2-6

P. Bhattacharya and N. P. Mukherjee, Fuzzy groups: some group theoretic analogs II, Inform. Sci. 41 (1987), 77-91. https://doi.org/10.1016/0020-0255(87)90006-5

P. A. Ejegwa, Correspondence between fuzzy multisets and sequences, Global J. Sci. Frontier Research: Math. Decision Sci. 14(7) (2014), 61-66.

P. A. Ejegwa, On abelian fuzzy multigroups, J. Fuzzy Math. 26(3) (2018), 655-668.

P. A. Ejegwa, On fuzzy multigroups and fuzzy submultigroups, J. Fuzzy Math. 26(3) (2018), 641-654.

P. A. Ejegwa, On normal fuzzy submultigroups of a fuzzy multigroup, Theory Appl. Math. Comp. Sci. 8(1) (2018), 64-80.

P. A. Ejegwa, Homomorphism of fuzzy multigroups and some of its properties, Appl. Appli. Math. 13(1) (2018), 114-129.

P. A. Ejegwa, Direct product of fuzzy multigroups, J. New Theory 28 (2019), 62-73.

P. A. Ejegwa, Synopsis of the notions of multisets and fuzzy multisets, Ann. Commun. Math. 2(2) (2019), 101-120.

P. A. Ejegwa, Some group’s theoretic notions in fuzzy multigroup context, in: Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures, IGI Global Publisher, Hershey, Pennsylvania, USA, 2020, pp. 34-62. https://doi.org/10.4018/978-1-7998-0190-0.ch003

P. A. Ejegwa and J. A. Otuwe, Frattini fuzzy subgroups of fuzzy groups, J. Univ. Math. 2(2) (2019), 175-182.

D. Knuth, The art of computer programming, Semi Numerical Algorithms, 2nd ed., Addison-Wesley, Reading, Massachusetts, 1981.

S. Miyamoto, Basic operations of fuzzy multisets, J. Japan Soc. Fuzzy Theory and Systems 8(4) (1996), 639-645. https://doi.org/10.3156/jfuzzy.8.4_47

S. Miyamoto and K. Mizutani, Fuzzy multiset model and methods for nonlinear document clustering for information retrieval, in: Modeling Decisions for Artificial Intelligence, Springer-Verlag, Berlin, Heidelberg, 2004, pp. 273-283. https://doi.org/10.1007/978-3-540-27774-3_26

K. Mizutani, R. Inokuchi and S. Miyamoto, Algorithms of nonlinear document clustering based on fuzzy multiset model, Int. J. Intell. Syst. 23 (2008), 176-198. https://doi.org/10.1002/int.20263

J. M. Mordeson, K. R. Bhutani and A. Rosenfeld, Fuzzy Group Theory, Springer-Verlag, Berlin, Heidelberg, 2005. https://doi.org/10.1007/b12359

N. P. Mukherjee and P. Bhattacharya, Fuzzy groups: some group theoretic analogs, Inform. Sci. 39 (1986), 247-268. https://doi.org/10.1016/0020-0255(86)90039-3

N. P. Mukherjee and P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inform. Sci. 34 (1984), 255-239. https://doi.org/10.1016/0020-0255(84)90050-1

R. Rasuli, t-norms over fuzzy multigroups, Earthline J. Math. Sci. 3(2) (2020), 207-228. https://doi.org/10.34198/ejms.3220.207228

A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. https://doi.org/10.1016/0022-247X(71)90199-5

T. K. Shinoj, A. Baby and J. J. Sunil, On some algebraic structures of fuzzy multisets, Ann. Fuzzy Math. Inform. 9(1) (2015), 77-90.

A. Syropoulos, On generalized fuzzy multisets and their use in computation, Iranian J. Fuzzy Systems 9(2) (2012), 113-125.

R. R. Yager, On the theory of bags, Int. J. General Systems 13 (1986), 23-37. https://doi.org/10.1080/03081078608934952

L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

How to Cite
Ejegwa, P. A., & Agbetayo, J. M. (2020). On Commutators of Fuzzy Multigroups. Earthline Journal of Mathematical Sciences, 4(2), 189-210. https://doi.org/10.34198/ejms.4220.189210