Refinements and Extensions of Classical Integral Inequalities: Hölder, Hardy, Minkowski, Clarkson, and Schweitzer
Abstract
Integral inequalities are a fundamental part of modern mathematical analysis and the theory of function spaces. In this paper, we present several refinements and extensions to classical integral inequalities, with a particular focus on those of Hölder, Hardy, Minkowski, Clarkson, and Schweitzer. First, we apply Hölder's inequality to find new refined bounds. Then, we establish Hölder-type inequalities using extended Young's inequalities. Consequently, we derive Hardy-type derivative inequalities with an optimal weight factor. After that, we introduce the Minkowski-Clarkson relation and variation for two functions. Lastly, we formulate a weighted generalisation of Schweitzer's inequality incorporating parametric functions. Concrete examples involving the beta and gamma functions demonstrate the sharpness and applicability of the proposed bounds, showing measurable improvements upon their classical counterparts.
Downloads
References
Abdeljawad, T., Meftah, B., Lakhdari, A., & Alqudah, M. A. (2024). An extension of Schweitzer's inequality to Riemann-Liouville fractional integral. Open Mathematics, 22(1). https://doi.org/10.1515/math-2024-0043
Antognazza, M. R. (2009). Leibniz: An intellectual biography. Cambridge University Press. https://doi.org/10.1017/CB09781139012805
Azzouz, N., & Benaissa, B. (2025). An approach to reverse Minkowski type inequality with k-weighted fractional integral operator. Bulletin of the Transilvania University of Brașov, Series III: Mathematics and Computer Science, 56(7)(2), 39-52. https://doi.org/10.31926/but.mif.2025.5.67.2.3
Beals, R., & Wong, R. S. C. (2010). Special functions: A graduate text. Cambridge University Press. https://doi.org/10.1017/CB09780511762543
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press. https://doi.org/10.1017/CB09780511804441
Carlen, E. A., Frank, R. L., Ivanisvili, P., & Lieb, E. H. (2021). Inequalities for LP-norms that sharpen the triangle inequality and complement Hanner's inequality. Journal of Geometric Analysis, 31 (2), 1860-1878. https://doi.org/10.1007/s12220-020-00425-y
Choi, D. (2018). A generalization of Young-type inequalities. Mathematical Inequalities & Applications, 21(1), 99-106. https://doi.org/10.7153/mia-2018-21-08
Clarkson, J. A. (1936). Uniformly convex spaces. Transactions of the American Mathematical Society, 40(3), 396-414. https://doi.org/10.1090/S0002-9947-1936-1501880-4
Folland, G. B. (1999). Real analysis: Modern techniques and their applications (2nd ed.). John Wiley & Sons.
Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Academic Press.
Hardy, G. H., Littlewood, J. E., & Pólya, G. (1952). Inequalities. Cambridge University Press.
Krasopoulos, P. T., & Bougoffa, L. (2022). Reverse Hölder and Minkowski type integral inequalities for n functions. Australian Journal of Mathematical Analysis and Applications, 19(1), Article 9. https://doi.org/10.26430/001c.33045
Lebesgue, H. (1902). Intégrale, longueur, aire. Annali di Matematica Pura ed Applicata, 7(1), 231-359. https://doi.org/10.1007/BF02420592
Lin, Z., & Bai, Z. (2011). Probability inequalities. Springer. https://doi.org/10.1007/978-3-642-05261-3
Mitrinović, D. S., Pečarić, J. E., & Fink, A. M. (2013). Classical and new inequalities in analysis (Vol. 61). Springer. https://doi.org/10.1007/978-94-017-1043-5
Newton, I. (1968). The mathematical papers of Isaac Newton: Vol. 2, 1667-1670 (D. T. Whiteside, Ed.). Cambridge University Press.
Paz Moyado, J. A., Quintana, Y., Rodríguez, J. M., & Sigarreta, J. M. (2023). New reverse Hölder-type inequalities and applications. Mathematical Inequalities & Applications, 26(4). https://doi.org/10.7153/mia-2023-26-63
Perko, L. (2001). Differential equations and dynamical systems (3rd ed.). Springer. https://doi.org/10.1007/978-1-4613-0003-8
Riemann, B. (1868). Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13, 87-132.
Rockafellar, R. T. (1970). Convex analysis. Princeton University Press. https://doi.org/10.1515/9781400873173
Royden, H. L., & Fitzpatrick, P. (2010). Real analysis (4th ed.). Pearson.
Rudin, W. (1987). Real and complex analysis (3rd ed.). McGraw-Hill.
Schweitzer, P. (1914). An inequality concerning the arithmetic mean. Mathematikai és Fizikai Lapok, 23, 257-261.
Wheeden, R. L., & Zygmund, A. (2015). Measure and integral: An introduction to real analysis (2nd ed.). Chapman & Hall/CRC. https://doi.org/10.1201/b18361

This work is licensed under a Creative Commons Attribution 4.0 International License.
.jpg)
