Fourier Series and Recurrence Relations for Zeta Functions

  • Daniel Felipe Martinez Barreto University of Granada, 18012, Granada, Spain
  • Christophe Chesneau University of Caen-Normandie, 14032, Caen, France
Keywords: Fourier expansions, Riemann zeta function, Hurwitz zeta function, recurrence formulas

Abstract

This article explores the connection between Fourier series and various zeta functions, including the Riemann zeta function and its generalizations. Specifically, we derive recurrence formulas for even and odd values of zeta functions using Fourier expansions, extending these results to the Hurwitz zeta function.

Downloads

Download data is not yet available.

References

Arfken, G. B. (1985). Fourier series. In Mathematical methods for physicists (Chap. 14, pp. 760-793). Academic Press. https://doi.org/10.1016/B978-0-12-059820-5.50022-7

Bényi, Á. (2005). Finding the sums of harmonic series of even order. The College Mathematics Journal, 36, 44-48. https://doi.org/10.1080/07468342.2005.11922109

Bényi, Á. (2005). A recursion for alternating harmonic series. Journal of Applied Mathematics and Computing, 18, 377-381. https://doi.org/10.1007/BF02936580

Edwards, H. M. (2001). Riemann's zeta function. Dover Publications.

Weisstein, E. W. (n.d.). Dirichlet beta function. In Math World A Wolfram Web Resource. https://mathworld.wolfram.com/DirichletBetaFunction.html

Weisstein, E. W. (n.d.). Hurwitz zeta function. In Math World-A Wolfram Web Resource. https://mathworld.wolfram.com/HurwitzZetaFunction.html

Borwein, J. M., & Bradley, D. M. (2004). Experiments in mathematics: Computational paths to discovery. A K Peters. https://doi.org/10.1201/9781439864197

Nakamura, T. (2025). The values of zeta functions composed by the Hurwitz and periodic zeta functions at integers. Aequationes Mathematicae, 99, 2273-2292. https://doi.org/10.1007/s00010-025-01230-0

Milgram, M. (2021). A series representation for Riemann's zeta function and some interesting identities that follow. Journal of Classical Analysis, 17(2), 129-167. https://doi.org/10.7153/jca-2021-17-09

Published
2026-01-06
How to Cite
Barreto, D. F. M., & Chesneau, C. (2026). Fourier Series and Recurrence Relations for Zeta Functions. Earthline Journal of Mathematical Sciences, 16(1), 125-131. https://doi.org/10.34198/ejms.16126.10.125131