Fourier Series and Recurrence Relations for Zeta Functions
Abstract
This article explores the connection between Fourier series and various zeta functions, including the Riemann zeta function and its generalizations. Specifically, we derive recurrence formulas for even and odd values of zeta functions using Fourier expansions, extending these results to the Hurwitz zeta function.
Downloads
References
Arfken, G. B. (1985). Fourier series. In Mathematical methods for physicists (Chap. 14, pp. 760-793). Academic Press. https://doi.org/10.1016/B978-0-12-059820-5.50022-7
Bényi, Á. (2005). Finding the sums of harmonic series of even order. The College Mathematics Journal, 36, 44-48. https://doi.org/10.1080/07468342.2005.11922109
Bényi, Á. (2005). A recursion for alternating harmonic series. Journal of Applied Mathematics and Computing, 18, 377-381. https://doi.org/10.1007/BF02936580
Edwards, H. M. (2001). Riemann's zeta function. Dover Publications.
Weisstein, E. W. (n.d.). Dirichlet beta function. In Math World A Wolfram Web Resource. https://mathworld.wolfram.com/DirichletBetaFunction.html
Weisstein, E. W. (n.d.). Hurwitz zeta function. In Math World-A Wolfram Web Resource. https://mathworld.wolfram.com/HurwitzZetaFunction.html
Borwein, J. M., & Bradley, D. M. (2004). Experiments in mathematics: Computational paths to discovery. A K Peters. https://doi.org/10.1201/9781439864197
Nakamura, T. (2025). The values of zeta functions composed by the Hurwitz and periodic zeta functions at integers. Aequationes Mathematicae, 99, 2273-2292. https://doi.org/10.1007/s00010-025-01230-0
Milgram, M. (2021). A series representation for Riemann's zeta function and some interesting identities that follow. Journal of Classical Analysis, 17(2), 129-167. https://doi.org/10.7153/jca-2021-17-09

This work is licensed under a Creative Commons Attribution 4.0 International License.
.jpg)
