Exploring the Statistical Treatments, Different Methods of Parameter Estimation, and Practical Applications of a New Probability Model

  • Thomas Ejemah Department of Statistics, Southern Delta University, Ozoro, Nigeria
  • Francis E. Itiveh Department of Statistics, Southern Delta University, Ozoro, Nigeria
  • Godspower A. Eriyeva Department of Statistics, Southern Delta University, Ozoro, Nigeria
  • Efezino P. Omosioni Department of Statistics, Southern Delta University, Ozoro, Nigeria
  • Festus C. Opone Department of Statistics, Southern Delta University, Ozoro, Nigeria
Keywords: Fréchet distribution, MTI transformation, methods of parameter estimation, quantiles

Abstract

This paper proposes a new three-parameter generalized Fréchet distribution using the MTI transformation scheme. We refer to the proposed model as MTI-Fréchet (MTIF) distribution. Several statistical treatments of the MTIF distribution, including survival, hazard rate, and quantile functions, moments, incomplete moments, moment-generating function, probability-weighted moment, and Renyi entropy, are derived. The study adopts four methods of parameter estimation to estimate the parameters of the MTIF distribution, followed by a simulation experiment to investigate the performance of the parameter estimates based on the four methods. The simulation results suggest that the MPS is the most appropriate estimation method for estimating the parameters of the MTIF distribution. The flexibility of the proposed MTIF distribution in practical data fitting is illustrated using two data sets. The results obtained from some model selection criteria and goodness-of-fit test statistics revealed that the MTIF distribution offered a better fit for the data sets compared to the classical Fréchet distribution and other generalized Fréchet distributions.

References

Aldahlan, M. A. (2022). Sine Fréchet model: Modelling of COVID-19 death cases in Kingdom of Saudi Arabia. Mathematical Problems in Engineering, 2022, 2039076. https://doi.org/10.1155/2022/2039076

Alsalafi, A., Shahbaz, S., & Al-Turk, L. (2025). A new bivariate transmuted family of distributions: Properties and application. European Journal of Pure and Applied Mathematics, 18(2). https://doi.org/10.1155/2024/5583105

Al Sobhi, M. M. (2021). The modified Kies-Fréchet distribution: Properties, inference and application. AIMS Mathematics, 6(5), 4691–4714. https://doi.org/10.3934/math.2021276

Bantan, R. A. R., Jamal, F., Chesneau, C., & Elgarhy, M. (2021). Theory and applications of the unit Gamma/Gompertz distribution. Mathematics, 9, 1850. https://doi.org/10.3390/math9161850

Cheng, R. C. H., & Amin, N. A. K. (1979). Maximum product of spacings estimation with application to the lognormal distribution. University of Wales IST.

Chesneau, C., & Opone, F. C. (2022). The power continuous Bernoulli distribution: Theory and applications. Reliability: Theory & Application, 17(4), 232–248.

Chesneau, C., Opone, F. C., & Ubaka, N. (2022). Theory and applications of the transmuted continuous Bernoulli distribution. Earthline Journal of Mathematical Sciences, 10(2), 385–407. https://doi.org/10.34198/ejms.10222.385407

Chesneau, C., & Opone, F. C. (2023). Exploring the weighted harmonic mean transformation to generate new probability distributions. International Journal of Open Problems in Computer Mathematics, 16(4), 1–13.

Diab, L. S., Osi, A. A., Sabo, S. A., & Musa, I. Z. (2025). A new inverted modified Kies family of distributions: Properties, estimation, simulation and applications. Journal of Research and Applied Sciences, 18(2), 101542. https://doi.org/10.1016/j.jrras.2025.101542

Ghitany, M., Atieh, B., & Nadarajah, S. (2008). Lindley distribution and its applications. Mathematics and Computers in Simulation, 78, 493–506. https://doi.org/10.1016/j.matcom.2007.06.007

Greenwood, J. A., Landwehr, J. M., & Matalas, N. C. (1979). Probability weighted moments: Definitions and relations of parameters of several distributions expressible in inverse form. Water Resources Research, 15, 1049–1054. https://doi.org/10.1029/WR015i005p01049

Kavya, P., & Manoharan, M. (2021). Some parsimonious models for lifetimes and applications. Journal of Statistical Computation and Simulation, 91(18), 3693–3708. https://doi.org/10.1080/00949655.2021.1946064

Kharazmi, O., Nik, A. S., Hamedani, G. G., & Altun, E. (2022). Harmonic mixture-G family of distributions: Survival regression, simulation by likelihood, bootstrap and Bayesian discussion with MCMC algorithm. Austrian Journal of Statistics, 51(2), 1–27. https://doi.org/10.17713/ajs.v51i2.1225

Krishna, E., Jose, K. K., Alice, T., & Ristić, M. M. (2013). The Marshall-Olkin Fréchet distribution. Communications in Statistics: Theory and Methods, 42(22), 4091–4107. https://doi.org/10.1080/03610926.2011.648785

Lone, M. A., Dar, I. H., & Jan, T. R. (2022). An innovative method for generating distributions: Applied to Weibull distribution. Journal of Scientific Research, 66, 308–315. https://doi.org/10.37398/JSR.2022.660336

Mahmoud, M. R., & Mandouh, R. M. (2013). On the transmuted Fréchet distribution. Journal of Applied Sciences Research, 9, 5553–5561.

Mead, M. E. (2014). A note on Kumaraswamy-Fréchet distribution. Australian Journal of Basic and Applied Sciences, 8, 294–300.

Moley, D. J., Ali, M. A., & Alam, F. M. A. (2024). Quartic transmuted Fréchet distribution: Properties, estimation and applications. Advances and Applications in Statistics, 91(2), 175–204. https://doi.org/10.17654/0972361724012

Mosilhy, M. A., & Eledum, H. (2022). Cubic transmuted Fréchet distribution. Journal of Statistics Applications and Probability, 11(1), 135–145. https://doi.org/10.18576/jsap/110110

Nadarajah, S., & Gupta, A. K. (2004). The beta Fréchet distribution. Far East Journal of Theoretical Statistics, 14(1), 15–24.

Nadarajah, S., & Kotz, S. (2003). The exponentiated Fréchet distribution. InterStat Electronic Journal, 14, 1–7.

Nasiru, S., & Abubakari, A. G. (2022). Marshall-Olkin Zubair-G family of distributions. Pakistan Journal of Statistics and Operation Research, 18(1), 195–210. https://doi.org/10.18187/pjsor.v18i1.3096

Nasiru, S., Mwita, P. N., & Ngesa, O. (2019). Alpha power transformed Fréchet distribution. Applied Mathematics and Information Sciences, 13(1), 129–141. https://dx.doi.org/10.18576/amis/130117

Ocloo, S. K., Brew, L., Nasiru, S., & Odoi, B. (2022). Harmonic mixture Fréchet distribution: Properties and applications to lifetime data. International Journal of Mathematics and Mathematical Sciences. https://doi.org/10.1155/2022/6460362

Opone, F. C., & Chesneau, C. (2024). The Opone family of distributions: Beyond the power continuous Bernoulli distribution. Operations Research and Decisions, 34(4), 103–124. https://doi.org/10.37190/ord240407

Rényi, A. (1961). On measure of entropy and information. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, 1, 547–561. University of California Press.

Swain, J. J., Venkatraman, S., & Wilson, J. R. (1988). Least square estimation of distribution functions in Johnson translation system. Journal of Statistics Computation and Simulation, 29(4), 271–297. https://doi.org/10.1080/00949658808811068

Ubaka, O. N., & Ewere, F. (2023). The continuous Bernoulli-generated family of distributions: Theory and applications. Reliability: Theory and Application, 18(3), 428–441.

Published
2025-06-23
How to Cite
Ejemah, T., Itiveh, F. E., Eriyeva, G. A., Omosioni, E. P., & Opone, F. C. (2025). Exploring the Statistical Treatments, Different Methods of Parameter Estimation, and Practical Applications of a New Probability Model. Earthline Journal of Mathematical Sciences, 15(5), 755-778. https://doi.org/10.34198/ejms.15525.755778
Section
Articles