Mathematical Analysis of a Tuberculosis-Schistosomiasis Co-infection Model with Vaccination and Treatment

  • I. I. Ako Department of Mathematics, University of Benin, Benin City, Nigeria
  • R. U. Omoregie Department of Mathematics, University of Benin, Benin City, Nigeria
Keywords: BCG, backward bifurcation, co-infection, schistosomiasis, tuberculosis

Abstract

We present a mathematical model, that is deterministic, for investigating the impact of schistosomiasis infection on the immunogenicity of the BCG vaccine affects the use of vaccination as a measure of control against TB infection at population level in Nigeria. The presence of the backward bifurcation phenomenon was established from the analysis of the model, and it was discovered that the following parameters were responsible the adjustment parameter for comparative contagiousness of individuals re-contaminated with TB ($\Theta_{RT}$), the rate of therapy for schistosomiasis-only infected persons ($\zeta_S$), the impact of schistosomiasis on the BCG protection against TB ($\zeta_{TS}$), BCG vaccine waning ($\theta_V$), the BCG vaccine efficacy ($\epsilon_1$), the treatment rate for TB ($\zeta_T$), the comparative rates by which individuals having dormant schistosomiasis ($\eta_1$) cum virulent schistosomiasis ($\eta_2$) are tainted with TB, correspondingly, the depreciated rate of contamination with schistosomiasis ($\psi$), the regulation parameter for comparative infectiousness of persons possessing virulent TB cum dormant schistosomiasis ($\Pi_1$), the treatment rate for TB for co-infected persons ($\zeta_{T1}$), the progression rate from contagious TB/unprotected from schistosomiasis to contagious TB/contagious schistosomiasis ($\sigma$), and the rate of advancement from unprotected against the two infirmities TB/schistosomiasis to unprotected against TB/infectious schistosomiasis ($\alpha_2$). The disease-free equilibrium was found to be globally asymptotically stable when the parameters responsible for the backward bifurcation phenomenon were negligible, the the effective reproduction number is less than unity.

References

Ako, I. I. (2024). Uncertainty and sensitivity analysis of the effective reproduction number for a deterministic mathematical model for tuberculosis-schistosomiasis co-infection dynamics. Transactions of the Nigerian Association of Mathematical Physics, 20, 45–60. http://doi.org/10.60787/tnamp.v20.378

Ako, I. I., Akhaze, R. U., & Olowu, O. O. (2021). The impact of reduced re-infection on schistosomiasis transmission dynamics: A theoretical study. Journal of Nigerian Association of Mathematical Physics, 59, 61–74.

Ako, I. I., & Olowu, O. O. (2024). Causes of backward bifurcation in a tuberculosis-schistosomiasis co-infection dynamics. Earthline Journal of Mathematical Sciences, 14(4), 655–695. https://doi.org/10.34198/ejms.14424.655695

Anderson, E. J., Webb, E. L., Mawa, P. A., Kizza, M., Lyadda, N., Nampijja, M., & Elliot, A. M. (2012). The influence of BCG vaccine strain on mycobacteria-specific and non-specific immune responses in a prospective cohort of infants in Uganda. Vaccine, 30, 2083–2089. https://doi.org/10.1016/j.vaccine.2012.01.053

Athithan, S., & Ghosh, M. (2013). Mathematical modelling of TB with the effects of case detection and treatment. International Journal of Dynamics and Control, 1, 223–230. https://doi.org/10.1007/s40435-013-0020-2

Barbour, A. D. (1982). Schistosomiasis. In R. M. Anderson (Ed.), Population Dynamics of Infectious Diseases (pp. 180–208). Chapman and Hall. https://doi.org/10.1007/978-1-4899-2901-3_6

Bhunu, C. P. (2011). Mathematical analysis of a three-strain tuberculosis transmission model. Applied Mathematical Modelling, 35, 4647–4660. https://doi.org/10.1016/j.apm.2011.03.037

Bhunu, C. P., Garira, W., & Magombedze, G. (2009). Mathematical analysis of a two-strain HIV/AIDS model with antiretroviral treatment. Acta Biotheoretica, 57(3), 361–381. https://doi.org/10.1007/s10441-009-9080-2

Blower, S. M., McLean, A. R., Porco, T. C., Small, P. M., Hopewell, P. C., Sanchez, M. A., & Moss, A. R. (1995). The intrinsic transmission dynamics of tuberculosis epidemics. Nature Medicine, 1, 815–821. https://doi.org/10.1038/nm0895-815

Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Mathematical Biosciences and Engineering, 1(2), 361–404. https://doi.org/10.3934/mbe.2004.1.361

Chen, Z., Zou, L., Shen, D., Zhang, W., & Ruan, S. (2010). Mathematical modelling and control of schistosomiasis in Hubei Province, China. Acta Tropica, 115, 119–125. https://doi.org/10.1016/j.actatropica.2010.02.012

Chitsulo, L., Engels, D., Montresor, A., & Savioli, L. (2000). The global status of schistosomiasis and its control. Acta Tropica, 77, 41–51. https://doi.org/10.1016/S0001-706X(00)00122-4

Chiyaka, E., & Garira, W. (2009). Mathematical analysis of the transmission dynamics of schistosomiasis in the human-snail hosts. Journal of Biological Systems, 17, 397–423. https://doi.org/10.1142/S0218339009002910

Chiyaka, E. T., Magombedze, G., & Mutimbu, L. (2010). Modelling within-host parasite dynamics of schistosomiasis. Computational and Mathematical Methods in Medicine, 11(3), 255–280. https://doi.org/10.1080/17486701003614336

Cohen, J. E. (1977). Mathematical models of schistosomiasis. Annual Review of Ecology and Systematics, 8, 209–233. https://doi.org/10.1146/annurev.es.08.110177.001233

Countrymeters. (2017). Nigeria Population. Retrieved from https://countrymeters.info/en/Nigeria

Desaleng, D., & Koya, P. R. (2016). Modeling and analysis of multi-drug-resistant tuberculosis in densely populated areas. American Journal of Applied Mathematics, 4(1), 1–10. https://doi.org/10.11648/j.ajam.20160401.11

Diaby, M. A., Iggidr, A., Sy, M., & Sene, A. (2014). Global analysis of a schistosomiasis infection model with biological control. Applied Mathematics and Computation, 246, 731–742. https://doi.org/10.1016/j.amc.2014.08.061

Elias, D., Wolday, D., Akuffo, H., Petros, B., Bronner, U., & Britton, S. (2001). Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after Bacille Calmette-Guérin (BCG) vaccination. Clinical and Experimental Immunology, 123(2), 219–225. https://doi.org/10.1046/j.1365-2249.2001.01446.x

Elias, D., Akuffo, H., Thors, C., Pawlowski, A., & Britton, S. (2005a). Low-dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clinical and Experimental Immunology, 139(3), 398–404. https://doi.org/10.1111/j.1365-2249.2004.02719.x

Elias, D., Akuffo, H., Pawlowski, A., Haile, M., Schön, T., & Britton, S. (2005b). Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine, 23(11), 1326–1334. https://doi.org/10.1016/j.vaccine.2004.09.038

Elias, D., Akuffo, H., & Britton, S. (2006). Helminths could influence the outcome of vaccines against TB in the tropics. Parasite Immunology, 28(10), 507–513. https://doi.org/10.1111/j.1365-3024.2006.00854.x

Elias, D., Britton, S., Aseffa, A., Engers, H., & Akuffo, H. (2008). Poor immunogenicity of BCG in a helminth-infected population is associated with increased in vitro TGF-β production. Vaccine, 26(31), 3897–3902. https://doi.org/10.1016/j.vaccine.2008.04.083

Feng, Z., Castillo-Chavez, C., & Capurro, A. F. (2000). A model for tuberculosis with exogenous reinfection. Theoretical Population Biology, 57, 235–247. https://doi.org/10.1006/tpbi.2000.1451

Feng, Z., Curtis, J., & Minchella, D. J. (2001). The influence of drug treatment on the maintenance of schistosome genetic diversity. Journal of Mathematical Biology, 43, 52–68. https://doi.org/10.1007/s002850100092

Feng, Z., Li, C.-C., & Milner, F. A. (2002). Schistosomiasis models with density dependence and age of infection in snail dynamics. Mathematical Biosciences, 177–178, 271–286. https://doi.org/10.1016/S0025-5564(01)00115-8

Feng, Z., Eppert, A., Milner, F. A., & Minchella, D. J. (2004). Estimation of parameters governing the transmission dynamics of schistosomes. Applied Mathematics Letters, 17, 1105–1112. https://doi.org/10.1016/j.aml.2004.02.002

Inobaya, M. T., Olveda, R. M., Chau, T. N. P., Olveda, D. U., & Ross, A. G. P. (2014). Prevention and control of schistosomiasis: A current perspective. Research Reports in Tropical Medicine, 5, 65–75. https://doi.org/10.2147/RRTM.S44274

Lakshmikantham, V., Leela, S., & Martynyuk, A. A. (1991). Stability analysis of nonlinear systems. SIAM Review, 33(1), 152–154. https://doi.org/10.1137/1033038

Li, X. X., & Zhou, X. N. (2013). Coinfection of tuberculosis and parasitic diseases in humans: A systematic review. Parasites & Vectors, 6, 79. https://doi.org/10.1186/1756-3305-6-79

Macdonald, G. (1965). The dynamics of helminth infections with special reference to schistosomes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 59(5), 489–506. https://doi.org/10.1016/0035-9203(65)90152-5

Milner, F. A., & Zhao, R. (2008). A deterministic model of schistosomiasis with spatial structure. Mathematical Biosciences and Engineering, 5(3), 505–522. https://doi.org/10.3934/mbe.2008.5.505

Monin, L., Griffiths, K. L., Lam, W. Y., Gopal, R., Kang, D. D., Ahmed, M., Rajamanickam, A., Cruz-Lagunas, A., Zúñiga, J., Babu, S., Kolls, J. K., Mitreva, M., Rosa, B. A., Ramos-Payan, R., Morrison, T. E., Murray, P. J., Rangel-Moreno, J., Pearce, E. J., & Khader, S. A. (2015). Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis. The Journal of Clinical Investigation, 125(12), 4699–4713. https://doi.org/10.1172/JCI77378

Moualeu, D. P., Weiser, M., Ehrig, R., et al. (2015). Optimal control for a tuberculosis model with undetected cases in Cameroon. Communications in Nonlinear Science and Numerical Simulation, 20, 986–1003. https://doi.org/10.1016/j.cnsns.2014.06.037

Mushayabasa, S., & Bhunu, C. P. (2011). Modelling schistosomiasis and HIV/AIDS codynamics. Computational and Mathematical Methods in Medicine, 2011, Article ID 846174. https://doi.org/10.1155/2011/846174

Ngarakana-Gwasira, E. T., Bhunu, C. P., Masocha, M., & Mashonjowa, E. (2016). Transmission dynamics of schistosomiasis in Zimbabwe: A mathematical and GIS approach. Communications in Nonlinear Science and Numerical Simulation, 35, 137–147. https://doi.org/10.1016/j.cnsns.2015.11.005

Nguipdop-Djomo, P., Heldal, E., Rodrigues, L. C., Abubakar, I., & Mangtani, P. (2015). Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: A retrospective population-based cohort study. The Lancet Infectious Diseases, 16(2), 219–226. https://doi.org/10.1016/S1473-3099(15)00400-4

Okosun, K. O., & Smith, R. (2017). Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 14(2), 377–405. https://doi.org/10.3934/mbe.2017024

Okuonghae, D. (2013). A mathematical model of tuberculosis transmission with heterogeneity in disease susceptibility and progression under a treatment regime for infectious cases. Applied Mathematical Modelling, 37, 6786–6808. https://doi.org/10.1016/j.apm.2013.01.039

Okuonghae, D. (2014). Lyapunov functions and global properties of some tuberculosis models. Journal of Applied Mathematics and Computation. https://doi.org/10.1007/s12190-014-0811-4

Okuonghae, D., & Aihie, V. (2008). Case detection and direct observation therapy strategy (DOTS) in Nigeria: Its effect on TB dynamics. Journal of Biological Systems, 16(1), 1–31. https://doi.org/10.1142/S0218339008002344

Okuonghae, D., & Aihie, V. U. (2010). Optimal control measures for tuberculosis mathematical models including immigration and isolation of infective cases. Journal of Biological Systems, 18(1), 17–54. https://doi.org/10.1142/s0218339010003160

Okuonghae, D., & Ikhimwin, B. O. (2016). Dynamics of a mathematical model for tuberculosis with variability in susceptibility and disease progressions due to difference in awareness level. Frontiers in Microbiology, 6, 1530. https://doi.org/10.3389/fmicb.2015.01530

Okuonghae, D., & Korobeinikov, A. (2007). Dynamics of tuberculosis: The effect of direct observation therapy strategy (DOTS) in Nigeria. Mathematical Modelling of Natural Phenomena, 2(1), 101–113. https://doi.org/10.1051/mmnp:2008013

Okuonghae, D., & Omosigho, S. E. (2011). Analysis of a mathematical model for tuberculosis: What could be done to increase case detection? Journal of Theoretical Biology, 269, 31–45. https://doi.org/10.1016/j.jtbi.2010.09.044

Olowu, O., & Ako, I. (2023). Computational investigation of the impact of availability and efficacy of control on the transmission dynamics of schistosomiasis. International Journal of Mathematical Trends and Technology, 69(8), 1–9. https://doi.org/10.14445/22315373/IJMTT-V69I8P501

Olowu, O., Ako, I. I., & Akhaze, R. I. (2021a). Theoretical study of a two-patch metapopulation schistosomiasis model. Transactions of the Nigerian Association of Mathematical Physics, 14, 53–68.

Olowu, O., Ako, I. I., & Akhaze, R. I. (2021b). On the analysis of a two-patch schistosomiasis model. Transactions of the Nigerian Association of Mathematical Physics, 14, 69–78.

Porco, T. C., & Blower, S. M. (1998). Quantifying the intrinsic transmission dynamics of tuberculosis. https://doi.org/10.1006/tpbi.1998.1366

Potian, J. A., Rafi, W., Bhatt, K., McBride, A., Gause, W. C., & Salgame, P. (2011). Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. Journal of Experimental Medicine, 208(9), 1863–1874. https://doi.org/10.1084/jem.20091473

Qi, L., & Cui, J. (2013). A schistosomiasis model with mating structure. Abstract and Applied Analysis, 2013, Article ID 741386. https://doi.org/10.1155/2013/741386

Qi, L., Xue, M., Cui, J., Wang, Q., & Wang, T. (2018). Schistosomiasis model and its control in Anhui Province. Bulletin of Mathematical Biology, 80, 2435–2451. http://doi.org/10.1007/s11538-018-0474-7

Salgame, P., Yap, G. S., & Gause, W. C. (2013). Effect of helminth-induced immunity on infections with microbial pathogens. Nature Immunology, 14(11), 1118–1126. https://doi.org/10.1038/ni.2736

Sharomi, O. Y., Safi, M. A., Gumel, A. B., & Gerberry, D. J. (2017). Exogenous re-infection does not always cause backward bifurcation in TB dynamics. Applied Mathematics and Computation, 298, 322–335. https://doi.org/10.1016/j.amc.2016.11.009

UNAIDS-WHO. (2004). Epidemiological Fact Sheet. http://www.unaids.org

United Nations. (2016). Sustainable Development Goals. https://sustainabledevelopment.un.org/topics/sustainabledevelopmentgoals

van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6

Waaler, H., Geser, A., & Andersen, S. (1962). The use of mathematical models in the study of the epidemiology of tuberculosis. American Journal of Public Health and the Nations Health, 52(6), 1002–1013. https://doi.org/10.2105/AJPH.52.6.1002

World Health Organization (WHO). (2008). Global Tuberculosis Control-Surveillance.

World Health Organization (WHO). (2015). Global Tuberculosis Report. WHO Press, Geneva, Switzerland.

World Health Organization (WHO). (2017). Schistosomiasis Factsheet 2017. WHO Press, Geneva, Switzerland.

World Health Organization (WHO). (2018a). Tuberculosis Factsheet 2018. WHO Press, Geneva, Switzerland.

World Health Organization (WHO). (2018b). Global Tuberculosis Report 2018. WHO Press, Geneva, Switzerland.

World Health Organization (WHO). (2023a). Global Tuberculosis Report 2023. WHO Press, Geneva, Switzerland.

World Health Organization (WHO). (2023b). Schistosomiasis Factsheet 2023. WHO Press, Geneva, Switzerland.

World Health Organization (WHO). (2024). Tuberculosis Factsheet 2024. WHO Press, Geneva, Switzerland.

Woolhouse, M. E. J. (1991). On the application of mathematical models of schistosome transmission dynamics I: Natural transmission. Acta Tropica, 49, 241. https://doi.org/10.1016/0001-706X(91)90077-W

Zhao, R., & Milner, F. A. (2008). A mathematical model of Schistosoma mansoni in Biomphalaria glabrata with control strategies. Bulletin of Mathematical Biology, 70(7), 1886–1905. https://doi.org/10.1007/s11538-008-9330-5

Zou, L., & Ruan, S. (2015). Schistosomiasis transmission and control in China. Acta Tropica, 143, 51–57. https://doi.org/10.1016/j.actatropica.2014.12.004

Published
2025-05-15
How to Cite
Ako, I. I., & Omoregie, R. U. (2025). Mathematical Analysis of a Tuberculosis-Schistosomiasis Co-infection Model with Vaccination and Treatment. Earthline Journal of Mathematical Sciences, 15(4), 649-683. https://doi.org/10.34198/ejms.15425.649683
Section
Articles