Second Derivative Mono-Implicit Runge-Kutta Methods
Abstract
Mono-implicit Runge-Kutta (MIRK) methods are Runge-Kutta methods having its stages depending on its output. In this paper, we develop a family of second derivative mono-implicit Runge-Kutta (SDMIRK) methods for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The SDMIRK methods are extension of the MIRK having first and second derivative terms. The general order conditions for the stages and output methods are presented. The SDMIRK methods for stages s = 3 and s = 4 derived were found to be A-stable, while methods for s = 5 and s = 6 are A(α)-stable. Implementation procedures and numerical experiment are discussed herein. Results obtained by the SDMIRK method are favourable than the results of second derivative backward difference formular (SDBDF) and second derivative linear multistep method (SDLMM).
References
Abdi, A., & Hojjati, G. (2011). An extension of general linear methods. Numerical Algorithms, 57(2), 149–167. https://doi.org/10.1007/s11075-010-9420-y
Alexander, R. (1977). Diagonally implicit Runge-Kutta methods for stiff ODEs. SIAM Journal on Numerical Analysis, 14, 1006–1021. https://doi.org/10.1137/0714068
Burrage, K. (1978). A special family of Runge-Kutta methods for solving stiff differential equations. BIT, 18, 22–41. https://doi.org/10.1007/BF01947741
Burrage, K. (1995). Parallel and sequential methods for ordinary differential equations. Oxford University Press. https://doi.org/10.1093/oso/9780198534327.001.0001
Burrage, K., Chipman, F. H., & Muir, P. H. (1994). Order results for mono-implicit Runge-Kutta methods. SIAM Journal on Numerical Analysis, 31, 876–891. https://doi.org/10.1137/0731047
Butcher, J. C. (1963). Coefficients for the study of Runge-Kutta integration processes. Journal of the Australian Mathematical Society, 3, 185–201. https://doi.org/10.1017/S1446788700027932
Butcher, J. C. (1964). Implicit Runge-Kutta processes. Mathematics of Computation, 18, 50–64. https://doi.org/10.1090/S0025-5718-1964-0159424-9
Butcher, J. C. (2005). High order A-stable numerical methods for stiff problems. Journal of Scientific Computing, 25, 51–66. https://doi.org/10.1007/s10915-004-4632-8
Butcher, J. C. (1977). On A-stable implicit Runge-Kutta methods. BIT, 17, 375–378. https://doi.org/10.1007/BF01933446
Butcher, J. C. (2016). Numerical methods for ordinary differential equations (2nd ed.). John Wiley. https://doi.org/10.1002/9781119121534
Capper, D., & Moore, D. R. (2006). On high order mono-implicit Runge-Kutta schemes and Hermite-Birkhoff interpolant. Journal of Numerical Analysis, Industrial and Applied Mathematics, 1(1), 27–47.
Cash, J. R. (1975). A class of implicit Runge-Kutta methods for the numerical integration of stiff differential systems. Journal of the ACM, 22, 504–511. https://doi.org/10.1145/321906.321915
Cash, J. R., & Singhal, A. (1982). Mono-implicit Runge-Kutta formulae for the numerical integration of stiff differential systems. IMA Journal of Numerical Analysis, 2, 211–217. https://doi.org/10.1093/imanum/2.2.211
Cash, J. R., & Singhal, A. (1982). High order methods for the numerical solution of two-point boundary value problems. BIT, 22, 184–199. https://doi.org/10.1007/BF01944476
Chen, D. L. (2014). The efficiency of singly-implicit Runge-Kutta methods for stiff differential equations. Numerical Algorithms, 65, 533–554. https://doi.org/10.1007/s11075-013-9797-5
Dahlquist, G. G. (1963). A special stability problem for linear multistep methods. BIT, 3, 27–43. https://doi.org/10.1007/BF01963532
De Meyer, H., et al. (1997). On the generation of mono-implicit Runge-Kutta-Nyström methods by mono-implicit Runge-Kutta methods. Journal of Computational and Applied Mathematics, 87, 147–167. https://doi.org/10.1016/S0377-0427(97)00183-0
Dow, F. (2017). Generalized mono-implicit Runge-Kutta methods for stiff ordinary differential equations (Master's thesis). Saint Mary's University, Halifax, Nova Scotia.
Ehle, B. L. (1969). On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems. Research Report CSRR 2010, University of Waterloo.
Enright, W. H. (1974). Second derivative linear multistep methods for stiff ordinary differential equations. SIAM Journal on Numerical Analysis, 11(2), 321–331. https://doi.org/10.1137/0711029
Fatunla, S. O. (1978). Numerical methods for initial value problems in ODEs. Academic Press.
Gear, C. W. (1971). Numerical methods for initial value problems in ordinary differential equations. Prentice-Hall.
Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and differential-algebraic problems. Springer-Verlag. https://doi.org/10.1007/978-3-642-05221-7_1
Hairer, E., Nørsett, S. P., & Wanner, G. (1987). Solving ordinary differential equations I: Nonstiff problems. Springer-Verlag. https://doi.org/10.1007/978-3-662-12607-3
Huang, S. J. Y. (2005). Implementation of general linear methods for stiff ordinary differential equations (Doctoral dissertation). University of Auckland.
Kulikov, G. Y., & Shindin, S. K. (2009). Adaptive nested implicit Runge-Kutta formulas of Gauss type. Applied Numerical Mathematics, 59, 707–722. https://doi.org/10.1016/j.apnum.2008.03.019
Lambert, J. D. (1973). Computational methods for ordinary differential systems. Wiley.
Lapidus, L., & Seinfeld, J. H. (1971). Numerical solution of ordinary differential equations. Academic Press.
Mitsui, T. (1982). Runge-Kutta type integration formulas including the evaluation of the second derivative Part I. Publications of the Research Institute for Mathematical Sciences, Kyoto University, 18, 325–364. https://doi.org/10.2977/prims/1195184026
Muir, P. H., & Enright, W. H. (1987). Relationships among some classes of implicit Runge-Kutta methods and their stability functions. BIT, 27, 403–423. https://doi.org/10.1007/BF01933734
Muir, P. H., & Owren, B. (1993). Order barriers and characterizations for continuous mono-implicit Runge-Kutta schemes. Mathematics of Computation, 61, 675–699. https://doi.org/10.2307/2153247
Muir, P. H., & Adams, M. (2001). Mono-implicit Runge-Kutta-Nyström methods with application to boundary ordinary differential equations. BIT Numerical Mathematics, 41(4), 776–799. https://doi.org/10.1023/A:1021956304751
Okuonghae, R. I. (2014). A-stable high order hybrid LMMs for stiff problems. Journal of Algorithms and Computational Technology, 8(4), 441–469. https://doi.org/10.1260/1748-3018.8.4.441
Okuonghae, R. I., & Ikhile, M. N. O. (2014). Second derivative general linear methods. Numerical Algorithms, 67(3), 637–654. https://doi.org/10.1007/s11075-013-9814-8
Okuonghae, R. I., & Ikhile, M. N. O. (2014). L(α)-stable variable order second derivative Runge-Kutta methods. Journal of Numerical Analysis and Applications, 7(4), 314–327. https://doi.org/10.1134/S1995423914040065
Okuonghae, R. I., & Ikhile, M. N. O. (2014). A family of highly stable second derivative block methods for stiff IVPs. Journal of Numerical Analysis and Applications, 7(1), 57–69. https://doi.org/10.1134/S1995423914010066
Okuonghae, R. I., & Ikhile, M. N. O. (2015). L(α)-stable multi-derivative GLM. Journal of Algorithms and Computational Technology, 9(4), 339–376. https://doi.org/10.1260/1748-3018.9.4.339
Prothero, A., & Robinson, A. (1974). On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Mathematics of Computation, 28, 145–162. https://doi.org/10.1090/S0025-5718-1974-0331793-2
Shintani, H. (1971). On one-step methods utilizing the second derivative. Hiroshima Mathematical Journal, 1, 349–372. https://doi.org/10.32917/hmj/1206137979
Vigo-Aguiar, J., & Ramos, H. (2006). A new eighth-order A-stable method for solving differential systems arising in chemical reactions. Journal of Mathematical Chemistry, 40(1). https://doi.org/10.1007/s10910-006-9121-x
Vigo-Aguiar, J., & Ramos, H. (2007). A family of A-stable Runge-Kutta collocation methods of higher order for initial-value problems. IMA Journal of Numerical Analysis, 27, 798–817. https://doi.org/10.1093/imanum/drl040
Voss, D. A., & Muir, P. H. (1999). Mono-implicit Runge-Kutta schemes for the parallel solution of initial value problems. Journal of Computational and Applied Mathematics, 102, 235–252. https://doi.org/10.1016/S0377-0427(98)00221-0
Olatunji, P. O., Ikhile, M. N. O., & Okuonghae, R. I. (2021). Nested second derivative two-step Runge-Kutta methods. International Journal of Applied and Computational Mathematics, 7, 249. https://doi.org/10.1007/s40819-021-01169-1
Chollom, J., & Jackiewicz, Z. (2003). Construction of two-step Runge-Kutta methods with large regions of absolute stability. Journal of Computational and Applied Mathematics, 157, 125–137. https://doi.org/10.1016/S0377-0427(03)00382-0
Conte, D., D'Ambrosio, R., & Jackiewicz, Z. (2010). Two-step Runge-Kutta methods with quadratic stability functions. Journal of Scientific Computing, 44(2), 191–218. https://doi.org/10.1007/s10915-010-9378-x
Olatunji, P. O., & Ikhile, M. N. O. (2020). Strongly regular general linear methods. Journal of Scientific Computing, 82(7), 1–25. https://doi.org/10.1007/s10915-019-01107-w
Olatunji, P. O. (2021). Nested general linear methods for stiff differential equations and differential algebraic equations (Ph.D. thesis). University of Benin, Nigeria.
Olatunji, P. O. (2019). Nested second derivative general linear methods. Science Research Annals, 10(Special Edition), 26–32.
Olatunji, P. O., & Ikhile, M. N. O. (2021). FSAL mono-implicit Nordsieck general linear methods with inherent Runge-Kutta stability for DAEs. Journal of the Korean Society for Industrial and Applied Mathematics, 25(4), 262–295.
Atabo, V. O., Adee, S. O., Olatunji, P. O., & Yahaya, D. J. (2024). New computational methods using seventh-derivative type for the solution of first order initial value problems. Qeios, 1–29. https://doi.org/10.32388/c5ia9c
Olabode, B. T., & Olatunji, P. O. (2024). A class of generalized hybrid multistep methods for the solution of stiff differential equations. World Scientific News, 187, 129–144.
Olatunji, P. O. (2023). A family of nested general linear methods for solving ordinary differential equations. Asian Research Journal of Mathematics, 19(8), 12–27. https://doi.org/10.9734/arjom/2023/v19i8684
Awonusika, R. O., & Olatunji, P. O. (2022). Analytical and numerical solutions of a class of generalized Lane-Emden equations. Journal of the Korean Society for Industrial and Applied Mathematics, 26(4), 185–223.
This work is licensed under a Creative Commons Attribution 4.0 International License.