Power Series and Finite Element Methods for Solving Cahn-Hilliard Equation
Abstract
The Cahn-Hilliard equation is a nonlinear partial differential equation that describes spinodal decomposition, coarsening phenomena, and the dynamics of phase separation for ternary iron alloys. This article employs a power series technique and the finite element method to obtain analytical and numerical solutions of the Cahn-Hilliard equation, respectively. For the power series method, the nonlinear terms in the proposed problem are dealt with using the generalised Cauchy product of power series, which allows us to obtain an explicit recursion formula for the expansion function coefficient of the series solution. On the other hand, numerical solution to the Cahn-Hilliard equation is obtained using the finite element method that is based on the implicit time-stepping scheme and the sparse linear algebra technique. The obtained analytical and numerical solutions are compared with the exact solution to illustrate the accuracy and reliability of the proposed methods. The absolute errors obtained show that the proposed methods are accurate and reliable. Two and three dimensional graphs of the exact and approximate solutions are presented for comparison purposes.
References
Ahmed, S. A., Qazza, A., & Saadeh, R. (2022). Exact solutions of nonlinear partial differential equations via the new double integral transform combined with iterative method. Axioms, 11(1), 247. https://doi.org/10.3390/axioms11060247
Aland, P. V., & Singh, P. (2022). Solution of non-linear partial differential equations using Laplace transform modified Adomian decomposition method. Journal of Physics: Conference Series, 2267(1), 012156. https://doi.org/10.1088/1742-6596/2267/1/012156
Alikakos, N. D., Bates, P. W., & Chen, X. (1994). Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Archive for Rational Mechanics and Analysis, 128(2), 165–205. https://doi.org/10.1007/BF00375025
Arrigo, D. J. (2022). Analytical techniques for solving nonlinear partial differential equations, Synthese lectures on mathematics and statistics. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-17069-0
Awonusika, R. O. (2022). Analytical solution of a class of fractional Lane-Emden equation: A power series method. International Journal of Applied and Computational Mathematics, 8, 155. https://doi.org/10.1007/s40819-022-01354-w
Awonusika, R. O. (2025). Approximate analytical solution of a class of highly nonlinear time-fractional-order partial differential equations. Partial Differential Equations in Applied Mathematics, 13, 101090. https://doi.org/10.1016/j.padiff.2025.101090
Awonusika, R. O., & Mogbojuri, O. A. (2022). Approximate analytical solution of fractional Lane-Emden equation by Mittag-Leffler function method. Journal of Nigerian Society of Physical Sciences, 4, 265–280. https://doi.org/10.46481/jnsps.2022.687
Awonusika, R. O., & Onuoha, O. B. (2024). Analytical method for systems of nonlinear singular boundary value problems. Partial Differential Equations in Applied Mathematics, 11, 100762. https://doi.org/10.1016/j.padiff.2024.100762
Awonusika, R. O., & Onuoha, O. B. (2024). Analytical solution of system of fractional order Lane-Emden type equations. Communications in Nonlinear Analysis, 1, 1–25.
Awonusika, R. O., & Olatunji, P. O. (2022). Analytical and numerical solutions of a class of generalized Lane-Emden equations. Journal of Korean Society for Industrial and Applied Mathematics, 26, 185–223.
Bates, P. W., & Fife, P. C. (1993). The dynamics of nucleation for the Cahn-Hilliard equation. SIAM Journal on Applied Mathematics, 53, 990–1008. https://doi.org/10.1137/0153049
Cahn, J. W. (1961). On the spinodal decomposition. Acta Metallurgica, 9, 795–801. https://doi.org/10.1016/0001-6160(61)90182-1
Cahn, J. W., & Hilliard, J. E. (1958). Free energy of a nonuniform system I: Interfacial free energy. Journal of Chemical Physics, 28, 258–267. https://doi.org/10.1063/1.1744102
Dias, L. S. (2023). Continuous theory of phase separation: The Cahn-Hilliard equations. Revista Brasileira de Ensino de Física, 45, e20230280. https://doi.org/10.1590/1806-9126-RBEF-2023-0280
Elliott, C. M., & French, D. A. (1987). Numerical studies of the Cahn-Hilliard equation for phase separation. IMA Journal of Applied Mathematics, 38, 97–128. https://doi.org/10.1093/imamat/38.2.97
Fife, P. C. (1991). Dynamical aspects of the Cahn-Hilliard equations. Barter Lectures, University of Tennessee, Spring, 1991.
González-Gaxiola, O. (2022). Solution of nonlinear partial differential equations by Adomian decomposition method. Studies in Engineering and Exact Sciences, 3, 1–8. https://doi.org/10.54021/seesv3n1-007
Giorgini, A., Grasselli, M., & Miranville, A. (2017). The Cahn-Hilliard-Oono equation with singular potential. Mathematical Models and Methods in Applied Sciences, 27, 2485–2510. https://doi.org/10.1142/s0218202517500506
Hua, J., Lin, P., Liu, C., & Wang, Q. (2011). Energy law preserving C0 finite element schemes for phase field models in two-phase flow computations. Journal of Computational Physics, 230, 7115–7131. https://doi.org/10.1016/j.jcp.2011.05.013
Hariharan, G. (2014). An efficient Legendre wavelet-based approximation for a few Newell-Whitehead and Allen-Cahn equations. Journal of Membrane Biology, 247, 371–380. https://doi.org/10.1007/s00232-014-9638-z
Hauser, J. R. (2009). Numerical methods for nonlinear engineering models. Springer. https://doi.org/10.1007/978-1-4020-9920-5
Hilal, N., Injrou, R., & Karroum, R. (2020). Exponential finite difference methods for solving Newell-Whitehead-Segel equation. Arabian Journal of Mathematics. https://doi.org/10.1007/s40065-020-00280-3
Hussain, S., Shah, S. A., Ayub, S., & Ullah, A. (2019). An approximate analytical solution of the Allen-Cahn equation using homotopy perturbation method and homotopy analysis method. Heliyon, 5, e03060. https://doi.org/10.1016/j.heliyon.2019.e03060
Hussain, A., Ibrahim, T. F., Birkea, F. M. O., Alotaibi, A. M., Al-Sinan, B. R., & Mukalazi, H. (2024). Exact solutions for the Cahn-Hilliard equation in terms of Weierstrass-elliptic and Jacobi-elliptic functions. Scientific Reports, 14, 13100. https://doi.org/10.1038/s41598-024-62961-9
Igbinovia, E., Ogunfeyitimi, S. E., & Ikhile, M. N. O. (2025). Block hybrid trapezoidal-type methods for solving initial value problems in ordinary differential equations. Earthline Journal of Mathematical Sciences, 15, 345–365. https://doi.org/10.34198/ejms.15325.345365
Jafari, H., Soltani, R., Khalique, C. M., & Baleanu, D. (2013). Exact solutions of two nonlinear partial differential equations by using the first integral method. Boundary Value Problems, 2013, 117. https://doi.org/10.1186/1687-2770-2013-117
Khalid, M., & Khan, F. S. (2017). A new approach for solving highly nonlinear partial differential equations by successive differentiation method. Mathematical Methods in the Applied Sciences, 1–8. https://doi.org/10.1002/mma.4421
Khan, I., Nawaz, R., Ali, A. H., Akgul, A., & Lone, S. A. (2023). Comparative analysis of the fractional order Cahn-Allen equation. Partial Differential Equations in Applied Mathematics, 8, 100576. https://doi.org/10.1016/j.padiff.2023.100576
Kim, J. (2007). A numerical method for the Cahn-Hilliard equation with a variable mobility. Communications in Nonlinear Science and Numerical Simulation, 12, 1560. https://doi.org/10.1016/j.cnsns.2006.02.010
Kim, J., Lee, S., Choi, Y., Lee, S., & Jeong, D. (2016). Basic principles and practical applications of the Cahn-Hilliard equation. Mathematical Problems in Engineering, 2016, 1–11. https://doi.org/10.1155/2016/9532608
Lee, D., Huh, J.-Y., Jeong, D., Shin, J., Yun, A., & Kim, J. (2014). Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation. Computational Materials Science, 81, 216–225. https://doi.org/10.1016/j.commatsci.2013.08.027
Larson, M. G., & Bengzon, F. (2013). The finite element method: Theory, implementation, and applications. Springer. https://doi.org/10.1007/978-3-642-33287-6
de Mello, E. V. L., Otton, T., & da Silveira, F. (2005). Numerical study of the Cahn-Hilliard equation in one, two, and three dimensions. Physica A, 347, 429. https://doi.org/10.1016/j.physa.2004.08.076
Mhadhbi, N., Gana, S., & Alsaeedi, M. F. (2024). Exact solutions for nonlinear partial differential equations via a fusion of classical methods and innovative approaches. Scientific Reports, 14, 6443. https://doi.org/10.1038/s41598-024-57005-1
Nair, S. (2011). Advanced topics in applied mathematics: For engineering and the physical sciences. Cambridge University Press. https://doi.org/10.1017/CBO9780511976995
Nirmala, A. N., & Kumbinarasaiah, S. (2024). Numerical solution of nonlinear Hunter-Saxton equation, Benjamin-Bona Mahony equation, and Klein-Gordon equation using Hosoya polynomial method. Results in Control and Optimization, 14, 100388. https://doi.org/10.1016/j.rico.2024.100388
Nofal, T. A. (2016). Simple equation method for nonlinear partial differential equations and its applications. Journal of the Egyptian Mathematical Society, 24, 204–209. https://doi.org/10.1016/j.joems.2015.05.006
Olatunji, P. O., & Ikhile, M. N. O. (2020). Variable order nested hybrid multistep methods for stiff ODEs. Journal of Mathematical and Computational Science, 10(1), 78–94. https://doi.org/10.28919/jmcs/4147
Olatunji, P. O., & Ikhile, M. N. O. (2020). Strongly regular general linear methods. Journal of Scientific Computing, 82(7), 1–25. https://doi.org/10.1007/s10915-019-01107-w
Olatunji, P. O., & Ikhile, M. N. O. (2021). FSAL mono-implicit Nordsieck general linear methods with inherent Runge-Kutta stability for DAEs. Journal of the Korean Society for Industrial and Applied Mathematics, 25(4), 262–295.
Olatunji, P. O., Ikhile, M. N. O., & Okuonghae, R. I. (2021). Nested second derivative two-step Runge-Kutta methods. International Journal of Applied and Computational Mathematics, 7, 1–39. https://doi.org/10.1007/s40819-021-01169-1
Roubíček, T. (2005). Nonlinear partial differential equations with applications. Birkhäuser Verlag.
Salas, A. H. (2012). Solving nonlinear partial differential equations by the sn-ns method. Abstract and Applied Analysis, 2012, 340824. https://doi.org/10.1155/2012/340824
Scheel, A. (2015). Spinodal decomposition and coarsening fronts in the Cahn-Hilliard equation. Journal of Dynamics and Differential Equations. https://doi.org/10.1007/s10884-015-9491-5
Singh, I., & Kumar, S. (2017). Efficient hybrid method for solving special type of nonlinear partial differential equations. Numerical Methods for Partial Differential Equations, 29 pages. https://doi.org/10.1002/num.22227
Singh, P., & Sharma, D. (2018). Convergence and error analysis of series solution of nonlinear partial differential equation. Nonlinear Engineering, 7, 303–308. https://doi.org/10.1515/nleng-2017-0113
Tekkaya, A. E., & Soyarslan, C. (2014). Finite element method. In L. Laperrière & G. Reinhart (Eds.), CIRP Encyclopedia of Production Engineering. Springer. https://doi.org/10.1007/978-3-642-20617-7_16699
Ugurlu, Y., & Kaya, D. (2008). Solutions of the Cahn-Hilliard equation. Computers and Mathematics with Applications, 56, 3038–3045. https://doi.org/10.1016/j.camwa.2008.07.007
Wu, H. (2022). A review on the Cahn-Hilliard equation: Classical results and recent advances in dynamic boundary conditions. Electronic Research Archive, 30, 2788–2832. https://doi.org/10.3934/era.2022143
Li, D., & Zhong, C. (1998). Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. Journal of Differential Equations, 149, 191. https://doi.org/10.1006/jdeq.1998.3429
Yakushevich, L. V. (1998). Nonlinear Physics of DNA. Wiley, New York, NY, USA.
This work is licensed under a Creative Commons Attribution 4.0 International License.